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ABSTRACT 
 
 
Computer-generated 3D graphics have been commonplace in computing since the 

early 1990’s.  However, most 3D scenes have focused on relatively small areas such as 

rooms or buildings.  Rendering large scale landscapes based on 3D geometry generally 

did not occur because the scenes generated tended to use up too much system memory 

and overburden 3D graphics cards with too many polygons.  However, there are 

applications where the terrain is critical and needs to be rendered properly such as 

cartography and military simulation.  This thesis is focused on methods of rendering 

terrain for such applications. 

The data used to build terrain geometry typically comes from elevation postings 

taken from surveys of the terrain.  This thesis does not focus on collecting this data nor 

does it compare various sources of terrain data.  Instead, this thesis is about taking 

elevation data, producing a rendered 3D scene, and placing objects within the scene 

relative to the terrain.  Having these capabilities makes many military and cartographic 

applications possible.  Some military applications include displaying the results of 

computer simulations in 3D, planning operations using a 3D landscape, and rehearsing 

coordinated operations in 3D.  The military does have some tools that can be used today 

for these actions, but such tools are typically proprietary, not interoperable and 

expensive.  This thesis is focused on using and extending open source tools for 3D terrain 

rendering.  The result is tools that can be freely used, studied, and expanded by anyone 

without licensing costs. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

 There are many military applications that depend upon having an accurate 

representation of terrain including simulating battles, planning operations, and rehearsing 

technical maneuvers.  Simulating battles requires determining if opposing forces can see 

each other and engage each other.  This requires line of sight calculations based on the 

positions of the opposing forces and the terrain separating them.  Planning operations 

requires knowing the steepness of terrain to determine where units can move and line of 

sight calculations (again) to determine engagement areas.  Rehearsing military operations 

requires as detailed a visual representation of the terrain as possible so that the 

participants in the rehearsal can recognize the significant terrain features later when 

executing the operations.  All of these applications depend upon accurate renderings of 

terrain or accurate analysis of the terrain.  The underlying source of data for the terrain is 

typically a two dimensional (2D) array of height values called a height field.  The 

problems with using computers as analysis tools for terrain begin with these height fields.  

This thesis looks at six specific problems with using terrain based on height fields: 

convert the height field into a renderable object, calculating the elevation of an arbitrary 

position, calculating the orientation that an object will have if resting on the terrain at an 

arbitrary point, calculating line of sight (LOS) based on height fields, calculating LOS 

based on curvature of the earth, and reducing the polygon count of rendered height-field 

terrain to improve the run-time performance of the rendering engine. 

B. OVERVIEW 

This thesis starts with the Virtual Reality Modeling Language (VRML) as a 

rendering engine.  VRML alone does not support geographic coordinates, though, so the 

GeoVRML extension to VRML is used.  GeoVRML allows a standard web browser such 

as Internet Explorer to render graphics that are specified in GeoDetic Coordinates (GDC), 

Universal Transverse Mercator coordinates (UTM), or GeoCentric Coordinates (GCC).  

Geodetic Coordinates are more commonly known as latitude and longitude values.  

Universal Transverse Mercator coordinates allow specifying locations as a northing value 
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(meters north-south) and an easting value (meters east-west) referenced within one of 

sixty world zones.  Both of these coordinate systems are basically 2D systems that are 

mapped to the varying surface of the earth. 

GeoCentric Coordinates are part of a true three-dimensional (3D) coordinate 

system.  A coordinate specified in GCC is a triplet containing an X, Y, and Z value.  

Converting between GDC and UTM is fairly straightforward since latitude and northing 

values are basically just a measurement of distance from a boundary, i.e. either the 

equator or a zone boundary.  Converting between longitude and easting values is a little 

more complicated because the distance between successive lines of longitude changes 

with latitude.  Lastly, the height values do not change when going from GDC to UTM as 

both are meters above sea level.  Converting to and from GCC is more complicated, 

though.  A change in latitude does not map to a change in one variable of a GCC triplet.  

Instead, a change in latitude can cause all three values in the GCC triplet to change.  

Changing longitude or elevation has similar complex effects.  Fortunately, most users do 

not need to work frequently with GCC coordinates as they are primarily needed by the 

computer for rendering. 

This thesis deals with all three of the above-mentioned coordinate systems: UTM, 

GDC and GCC.  However, the transformations between the systems are left to the 

GeoTransform portion of the GeoVRML code.  Why transformations are needed is now 

addressed, but the math behind doing the transformations is not yet discussed.  The 

computation of these transformations is significant.  If these transformations are 

computed or converted incorrectly, then objects and terrain will be rendered in the wrong 

locations.  In military applications, such problems can lead to disaster.  To address this 

concern, the geospatial software used in this thesis is designed so that these 

transformations are all done in an isolated package that can be validated as part of 

another study or swapped out with a package that has been validated.  The GeoTransform 

package that is being used is freely available to download, view, and use.  The end result 

is that all of the code built for and used in this thesis is available freely on the Internet 

without any significant restrictions on viewing or re-using source code. 
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Each of the six problems this thesis deals with depend on some or all of the 

coordinate systems mentioned above.  The first problem, translating height fields into 3D 

rendered objects, depends upon translating GDC and UTM coordinates into GCC 

coordinates and then connecting the coordinates in the proper sequence.  Calculating the 

elevation of arbitrary positions depends upon defining a plane based on GDC or UTM 

coordinates along with the height field to calculate the elevation of some point on that 

plane.  Calculating orientation at arbitrary positions is similar except that the plane must 

be defined in GCC coordinates and the normal calculated along with a rotation vector to 

coincide with that normal.  The fourth problem, calculating LOS based on height fields 

requires using GDC or UTM coordinates to determine distances between elevation 

postings so that angles representing possible lines of vision can be calculated and 

compared.  Calculating the LOS based on curvature of the earth is similar, but the height 

field is not necessary since the horizon is far more significant.  Finally, reducing the 

number of polygons in rendered terrain also involves calculating distances between 

points and determining the minimum number of polygons needed to render the terrain.  

Each of these problems are covered in detail in Chapter III and IV. 

C. MOTIVATION 

Developing this thesis furthers military computer simulations.  There are several 

military simulations that are already rendered in 3D such as flight simulators and tank 

gunnery trainers, but the bulk of current maneuver-training simulations are rendered from 

a 2D top-down perspective.  The techniques developed in this thesis are a foundation 

upon which existing 2D simulations can be displayed in 3D or new maneuver simulations 

can be built in 3D.  These techniques can also be used in real-time applications such as 

planning military operations and conducting visual rehearsals.  However, since the 

underlying GeoTransform package has not been validated, care should be taken when 

using the code developed here in real-world applications.  Either the GeoTransform 

package must be validated or replaced by another validated package before even 

considering using the work in this thesis for real-world military applications.  If 

validation does not occur, then any decisions about battle positions, artillery targets, or 

any other decision regarding munitions effects or determining locations of cover should 

be double checked with real-world reconnaissance efforts. 
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Of course, products from this thesis can also benefit real-world military 

operations in addition to simulations.  Part of planning military operations is Terrain 

Visualization.  Army Field Manual 3-34-230 Topographic Operations [FM 3-34-230 p. 1-

3] defines Terrain Visualization as the process through which a commander sees the 

terrain and understands its impact on the operation in which a military unit is involved.  

Viewing the terrain in true 3D with forces arrayed on that terrain properly can assist the 

commander in this task.  Currently, most units still do most if not all terrain analysis 

using traditional 2D paper maps.  Here is a diagram from FM 3-34-230 depicting Terrain 

Visualization. 

Figure 1.   Terrain visualization concepts [Army FM 3-34-230]. 

 

D. THESIS ORGANIZATION 

This thesis is organized in four chapters.  This first chapter provides an 

introduction to the topics being discussed including the six major areas of study.  This 

thesis is aimed at improving the rendering of 3D terrain based upon height fields and 

placing objects on that terrain. 



 5 

The second chapter focuses on the background material studied to complete this 

work.  Three geographic coordinate systems used to identify locations on a global scale 

are studied: UTM, GDC, and GCC.  Then, Digital Terrain Elevation Data (DTED), a 

commonly used format for encoding data for height fields, is examined.  Next, the 

Extensible Markup Language (XML) is briefly discussed as a tool for extracting height 

values from DTED files and organizing them into objects that can be rendered.  The 

second chapter continues with a discussion of the Virtual Reality Modeling Language 

(VRML) which is used as the rendering engine in this thesis.  The engine contains 

support for indexed face sets which are critical to this thesis.  An extension to VRML 

called GeoVRML is covered because it is needed for mapping global coordinates in 

VRML.  This discussion concludes with an introduction to X3D, the next version of 

VRML, and the corresponding X3D GeoSpatial component. 

Chapter III describes the work done in this thesis.  This works is divided into 

three sections each of which describes a program that handles part of the task of 

rendering terrain and placing objects on that terrain in 3D.  These subjects are the 

GeoManager program which allows communication between terrain and objects placed 

on that terrain, the GeoTerrainGrid program which renders terrain and does all 

calculation of elevation and slope of terrain, and the GeoLocation3 program which 

objects use to place themselves on terrain automatically.  All of the code is written in 

Java so that it can be used as VRML script files. 

Chapter IV contains conclusions and recommendations for future work.  Under 

the conclusions, the current abilities of the code built in this thesis are reviewed along 

with the limitations.  The future works section lists five specific areas where this thesis 

can be extended.  The topics are discussed in order from the simplest to implement to the 

most difficult. 
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II. BACKGROUND AND RELATED WORK 

A. INTRODUCTION 

This chapter begins by introducing three different coordinate systems for locating 

positions on a global scale.  The first two (UTM and GDC) are common for real-world 

navigational and cartographic uses while the third (GCC) is a computer specific system 

for rendering geography.  The next subject is Digital Terrain Elevation Data or DTED 

which is a common and readily available military standard for storing data about terrain.  

The Extensible Markup Language (XML) is then introduced as a tool to help work with 

DTED.  Finally, X3D and the Virtual Reality Modeling Language (VRML), the 

rendering engines that the code in this thesis uses, are described.   

B. GEOGRAPHIC COORDINATE SYSTEMS 

1. Latitude and Longitude 

Latitude and longitude are a spherically based mapping system for the earth.  

Imagine a coordinate axis being placed inside the earth with the origin at the earth’s 

center.  The x coordinate axis extends from the origin through the point where the equator 

(latitude 0°) and the prime meridian (longitude 0°) meet.  The positive z coordinate axis 

extends from the origin through the North Pole.  Finally, the positive y axis extends out 

from the origin so that it is perpendicular to the x-z plane and intersects the surface of the 

earth in the eastern hemisphere (somewhere in the Indian Ocean).  A drawing of this 

coordinate axis system can be verified with the right-hand rule.  Imagine grabbing the z 

coordinate axis with the right hand such that the fingers curl around from the x-axis 

toward the y axis.  If the thumb is pointing up along the z coordinate axis, then the 

coordinate system is properly placed.  The following diagram (Figure 2) from the NPS 

distributed learning module on maps and coordinates depicts this.  The online tutorial 

containing this diagram was created by James R. Clynch [Clynch website] and is located 

at http://www.oc.nps.navy.mil/oc2902w/c_mtutor/index.html. 
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Figure 2.   Depiction of earth with Cartesian axis 

 

The latitude component of a latitude and longitude coordinate determines how far 

north or south from the equator the location belongs.  The range is from 0° to 90° and 

refers to either north or south.  Thus, 90° north is the North Pole and 90° south is the 

South Pole.  The equator is simply 0° and could be referred to as either north or south.  

These degrees are further subdivided by sixtieths into minutes and seconds.  One second 

of latitude is equal to about 30 meters.  One degree of latitude is likewise approximately 

111 kilometers.  These distances are constant all over the surface of the earth.  Thus, any 

specific latitude defines a circle around the earth that is a constant distance from the 

equator.  Since the earth is a sphere, these circles get smaller the closer they are to the 

poles where they reach a circumference of zero.  Sometimes, systems prefer to use 

negative values for southern hemisphere coordinates and positive values for the northern 
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hemisphere.  This allows the values be stored strictly as numbers without needing an 

additional character to hold the n or s designation. 

The longitude component of a latitude and longitude coordinate determines a 

semicircle that reaches from the North Pole to the South Pole.  Since there is no natural 

point of reference for these semicircles like there was for the equator, an arbitrary 

reference point needs to be chosen.  The Prime Meridian longitude 0° was chosen as the 

longitudinal semicircle that travels through the observatory at Greenwich, England.  The 

rest of the earth is divided into 360 slices, each of which is 1° wide.  The slices are 

numbered from 0° to 180° and then designated as east or west.  Longitude 180° itself can 

be designated east or west, and refers to the line of longitude directly opposite the Prime 

Meridian.  Like the latitude values, some systems prefer to simply use a number and 

designate positive numbers as east and negative numbers as west.  The following diagram 

depicts the earth using latitude and longitude.  Once again, this diagram came from 

[Clynch website]. 
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Figure 3.   Earth with latitude and longitude system 

 

Latitude and longitude coordinates also frequently contain a height value referred 

to as the height above sea level.  Technically, this is not accurate.  The height refers to the 

height above a model of the earth known as an ellipsoid.  There are many ellipsoid 

models to use, but in this thesis the most common one, WGS84, is used.  This ellipsoid is 

used on most military maps and is the ellipsoid upon which DTED height values are 

based.  Using the height above the ellipsoid is much more intuitive than using the 

distance from the center of the earth and the resulting numbers are much smaller allowing 

them to be held as floating point numbers with reasonable accuracy.  Floating point 

numbers take only half as much memory as double precision variables making the files 

holding large amounts of height data smaller.  As for the reasonable accuracy, the 

importance of that is presented in section E of this chapter. 
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Together, the latitude, longitude, and elevation (height) values locate a position in 

3D relative to the center of the earth.  However, the coordinates must be converted to 

GCC coordinates based on the geoid for a computer to render the point.  The details of 

how this conversion happens are beyond the scope of this thesis.  Instead, the 

GeoTransform package from SRI that is included with GeoVRML is used.  GeoVRML is 

available freely on the web at www.geovrml.org.  Using a separate software package for 

conversions between coordinate systems has three advantages.  First, the code for making 

transformations is all located in one location.  Every place where a transform is needed 

calls the same transformation routines guaranteeing the same results.  Second, other 

programs that work with geographic coordinates can use the same package and will 

therefore get the same results.  This helps make programs work together when analyzing 

or displaying terrain and objects placed on that terrain.  Finally, having all the 

transformation code located in one package allows the code to be validated separately 

from the programs that use it.  Once the code is validated, users have much greater 

certainty that the programs that use the validated package are accurate.  With military 

applications, such validation is important.  Likewise, if the package is not validated but 

another transformation package is, then the validated package can replace the package 

that is not validated with minimal changes to the program.  For details about how these 

transformations are done, the reader is referred to the GeoTransform package developed 

by SRI [Web 3D Consortium GeoVRML specification 

http://www.geovrml.org/geotransform/]. 

Latitude and longitude coordinates are an excellent way to define locations on the 

earth because they are based on a spherical mapping system.  However, latitude and 

longitude can be difficult to work with when navigating and when running simulations.  

The primary problem is that moving east and west (i.e. changing longitude) is difficult to 

compute.  If an object is at the equator and moving east at 30 meters per hour, then the 

object is also moving one second of longitude per hour.  Because longitude lines 

converge as they approach the North of South Pole, an object moving at 30 meters per 

hour east located at the same latitude as Washington, D.C., travels 1.25 seconds of 

longitude per hour.  The velocity is the same, but the distance between lines of longitude 
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varies with latitude.  Therefore, speed does not map to changes in longitude easily, and 

distances are hard to determine based on changes in latitude and longitude coordinates. 

To address these shortcomings, many mapping schemes have been built on distance-

based coordinate systems.  The most common of these schemes is described in the next 

section. 

2. Universal Transverse Mercator (UTM) 

In the Universal Transverse Mercator or UTM geographic coordinate system, the 

earth is divided into grid zones so that coordinates are specified with northing and easting 

values.  The concept is that the northing and easting values are measured in meters 

instead of degrees like latitude and longitude.  This benefits users who are interested in 

quickly and easily measuring distances between points.  In fact, the distance between two 

UTM coordinates can be calculated using the Pythagorean Theorem taught in high school 

algebra.  With latitude and longitude, changes in longitude vary in distance as described 

previously in this thesis.  Objects moving at known speeds can be tracked in UTM 

coordinates easily.  The speed can be broken down into an easterly speed and a northerly 

speed.  These speeds are multiplied by time to get distance which is then added to the 

easting and northing values to get the new coordinate.  The drawback to UTM 

coordinates is that the system is not based on spherical coordinates.  Instead, UTM 

coordinates are simply a two dimensional mapping of the earth.  Since the earth is a 

sphere, some distortion occurs when mapping the curved surface of the earth to the flat 

surface of UTM coordinates. 

The amount of distortion introduced into UTM mappings is limited by mapping 

sections of the earth to UTM individually.  The earth is divided into 60 zones each of 

which is 6 degrees of longitude wide.  Zone 1 starts at 180 degrees west and proceeds 

east for 6 degrees.  These end up being narrow longitudinal zones that are approximately 

667 km wide at the equator and narrower when closer to the poles.  Inside a zone, the 

fundamental grid square is 100 km wide by 100 km long.  Since the zones are 667 km 

wide at the equator, this system does have some grid squares that are truncated.  At the 

poles, the system changes even more as the poles actually have special zone numbers and 

a somewhat different method of mapping the surface.  This thesis is not going to describe 

the UTM system in any greater detail than this.  The rendering system used in this thesis 
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requires that the coordinates contain a northing value that is the distance in meters from 

the equator (with southern hemisphere values being negative numbers), an easting value 

that is the distance from the western edge of the current zone, and the zone number (1 to 

60) for the zone of the coordinate.  Technically, there is also a boolean value labeled 

northern hemisphere.  When true, the coordinate is in the northern hemisphere.  This 

allows the user to specify southern hemisphere locations without using negative numbers.  

However, the variable can be left true and southern hemispheres coordinates can be 

specified as negative numbers.  The following diagram depicts the earth with the UTM 

system superimposed on it.  This diagram is courtesy of Professor Steven Dutch, Natural 

and Applied Sciences at the University of Wisconsin, Green Bay.  The article containing 

the diagram and more details about UTM is at [Dutch 

http://www.uwgb.edu/dutchs/FieldMethods/UTMSystem.htm]. 

Figure 4.   Earth as described by the UTM system. 

 

3. GeoCentric Coordinate System (GCC) 

Neither of the two previous coordinate systems can be displayed directly by the 

3D rendering system used in this thesis.  To display coordinates or anything built from 
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those coordinates, they must be transformed into a 3D Cartesian coordinate system 

(GCC).  In GCC, each coordinate contains an X, Y, and Z value that together reference a 

location in 3D space.  GCC coordinates are generally only used for display purposes.  

Tracking units in GCC is even more difficult than using latitude and longitude.  For 

example, consider an object circling the globe while moving east.  In latitude and 

longitude this means simply increasing the longitude being sure to keep the value within 

the legal values.  UTM is a little more complicated because there are 60 zones that the 

object will pass through as it goes around the world.  In GCC coordinates, the X, Y, and 

Z values will be changing with every move.  However, GCC coordinates are useful for 

calculating the orientation of objects that have already been translated to and placed in 

GCC space.  How GCC coordinates are used will be made clearer later in this thesis. 

C. DIGITAL TERRAIN ELEVATION DATA (DTED) 

Digital Terrain Elevation Data (DTED) is a dataset created under the direction of 

the United States Department of Defense (DOD) to help map the earth.  Simply put, the 

National Imagery and Mapping Agency (NIMA) uses various methods to obtain the 

elevation above sea level of most areas of the planet.  The result is a series of matrixes of 

elevation postings spanning the globe at specific intervals.  The lowest level of DTED 

used in this thesis is DTED level 1 which contains an elevation posting approximately 

every 90 meters.  This thesis also utilizes DTED level 2 which has postings every 30 

meters.  Higher levels of DTED exist, but levels 1 and 2 are not classified and more 

readily available than higher levels.  DTED does not contain any data about the terrain it 

covers other than spot elevations.  Any other information must be estimated or obtained 

from other sources.  However, DTED elevation postings work well for building 3D 

models of the terrain they cover.  In building these models the landform, slope, and 

terrain roughness are all approximated and displayed on the computer screen based on the 

elevation postings that DTED provides.  Of course, using higher levels of DTED data 

gives better approximations and better looking 3D models.  However, the amount of data 

stored and modeled is increased significantly. 

DTED data is stored in a standard binary format specified in MIL-PRF-89020A 

dated 19 April 1996.  Basically, the specification details the file structure for individual 

DTED files that cover small areas of the earth.  DTED is commonly distributed on CDs.  
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However, the earth is large and even at DTED level 1 requires numerous CDs to hold that 

much data.  Just to estimate this, the earth has a radius of approximately 6,300 km.  Thus, 

the surface area is approximately 500 million km2.  At DTED level 1, this requires 50 

billion height values for the entire globe.  If each height value is stored as a 4 byte single-

precision value, then 200 billion bytes are needed.  Thus, DTED quickly can reach into 

hundreds of gigabytes even at level 1.  Level 2 has nine times as much data.  However, 

the oceans are always at sea level so DTED typically does not store data for ocean areas – 

only land masses.  This reduces the total amount of data significantly so that the whole 

world at DTED level 1 can be stored on most modern day hard drives.  Trying to display 

the entire world at DTED level 1 at one time, though, is still beyond the capabilities of 

today’s computers because today’s computers do not have the tens or hundreds of 

gigabytes of RAM required to hold that much data in the computer’s memory.  Therefore, 

this thesis focuses on much smaller pieces of terrain so that most computers will be able 

to render the examples.  However, the code presented is capable of handling as much data 

as the computer can store and display. 

D. EXTENSIBLE MARKUP LANGUAGE (XML) 

The DTED format is fairly efficient for storing the large amounts of data 

generated.  However, utilizing that data can be difficult due to the low level binary format 

of DTED.  Reading binary files is difficult because an application program has to know 

the format of the file byte-by-byte in order to reconstruct the higher level data structures 

such as integers, floating point numbers, and strings.  If the application program gets off 

by one byte, then the program will typically crash or at least produce meaningless data.  

A more robust system might read a file for the user and break it up into its components 

based on information contained in the file itself.  The user might then simply ask for the 

dimensions of the data, the location of the data in the world, and the height field values 

without worrying about how many bytes constitute each height value or location 

parameter. 

The Extensible Markup Language (XML) was designed to meet this need and 

more.  XML is a markup language for data which means that data is stored along with 

some information that describes the data.  The data is enclosed in matching tags that 

describe the data.  For example, a height field of four values could look like this: 
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<heightField>1000 1002 998 1001</heightField> 

This data has an opening height field tag <heightField> and a closing height field tag 

</heightField> with four height values between them.  An XML parser reads this data 

and stores the four values with the name heightField.  If an application asked for the 

heightField, then the parser would pass the four values to the application.  The 

application does not have to know anything about how the four height values were stored 

in the file because the XML parser handles all those details.  The application’s 

responsibility is to know what to do with the height values.  Attributes can also be stored 

within these element tags that provide more data or provide metadata (data describing the 

data).  There can be tags that give the application information about what DTED level the 

data is stored in and what coordinates the height data is located at in the world or there 

could be attributes that store this data.  Either system makes the data available to the user.  

Using XML allows the application writer to focus more on the data and how it is used 

without worrying about how the data is stored and retrieved. 

 Of course, XML does more than just store and retrieve data.  XML can also be 

used to validate data files and to transform data files into other formats.  Validating files 

uses a technology called XML Schema, typically stored as XMLSchema Documents 

(XSD).  Basically, an XSD file is created to describe the structure of specific XML 

documents so the contents can be checked and validated for the proper form.  For 

example, an XSD document could check that all elevation postings are within height field 

tags and that all the information required is present.  The template file can even make 

sure that data follows specific rules such as integers only or values within a certain range, 

etc.  However, this technology is not directly used in this thesis.  It is mentioned because 

the technology can be useful in future applications that use the techniques and code from 

this thesis in larger terrain-rendering projects.  An application that uses networking to 

handle terrain between several computers might be a good example. 

 Another powerful feature of XML is its ability to transform data from one format 

to another.  This technology is called Extensible Stylesheet Language for 

Transformations (XSLT).  Using XSLT, terrain data files can be customized for specific 

applications.  This thesis used one such transformation developed by Captain James 
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Neushul, a student at the Naval Postgraduate School at the time this thesis was written.  

CPT Neushul’s code reads DTED files, parses them, and constructs renderable scene files 

written in X3D or VRML, both of which will be discussed later in this chapter.  The files 

produced are scene graphs that when run using an X3D or VRML browser create a 

geoElevationGrid described in the next section which covers VRML [Neushel 2003].  

This thesis uses these files as a starting point, and then investigates how the terrain data is 

rendered into 3D objects and how objects can be placed on this terrain.  The data in these 

files are the same elevation postings found in the original DTED files; it has simply been 

transformed into a format that is easier to work with.  This way, more effort is spent on 

rendering issues while avoiding input/output issues involved in parsing binary files. 

E. X3D AND THE VIRTUAL REALITY MODELING LANGUAGE (VRML) 

A rendering engine is a program that takes a description of objects in 3D and 

actually draws the pixels on the screen that make a picture of the 3D scene described.  

The math behind these conversions is complicated and beyond the scope of this thesis.  

VRML was the first popular 3D rendering language built specifically for the internet.  

VRML programs are called “world” files and they end with the extension .wrl.  When 

executed, the VRML program renders a 3D scene inside a web browser such as Internet 

Explorer or Netscape Navigator.  Extensible 3D Graphics (X3D) is a new version of 

VRML.  X3D currently has to be transformed through XSLT before viewing as VRML, 

and native X3D rendering engines are beginning to appear.  The specification for X3d is 

available at www.web3d.org/x3d.   

1. VRML Graphics Basics 

To display VRML programs, users must download a plug-in for their browser that 

includes a VRML rendering engine.  Several are available free of charge such as the 

Cortona player at www.parallelgraphics.com/products/cortona.  The Web3D Repository 

has numerous links to browser plug-ins and other useful VRML tools at 

http://www.web3d.org/vrml/vrml.htm.  The VRML language allows the user to build a 

scene graph that describes a 3D scene.  The VRML world is built on a 3D Cartesian 

coordinate system that follows the right hand rule and has the origin at its center.  

Initially, the positive X-axis is to the right, the positive Y-axis is up, and the positive Z-

axis comes out of the screen.  The figure 5 illustrates this using a coordinate axis scene 



18 

found at 

http://web.nps.navy.mil/~brutzman/Savage/Tools/Authoring/_pages/page03.html. 

Figure 5.   Right-handed coordinate axes showing VRML/X3D coordinate space 

 

Users define shapes out of existing primitives such as spheres and boxes or out of 

polygons built from coordinates.  The coordinates are floating point values or single 

precision values.  VRML also provides ample support for coloring objects, applying 

textures to objects, and placing lights in the scene.  There are position interpolators that 

move objects around based on key frame positions and timers.  Likewise, there are touch 

sensors and proximity sensors that allow interaction.  There are even video and sound 

objects.  The current X3D specification also added keyboard support.  In short, the 

language has most if not all of the components needed to make complicated scenes that 

have user interaction. 

A detailed explanation of how to build 3D scenes in VRML is available in [Ames 

1997] that describes every node built into VRML 97 in detail.  Another excellent 
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resource is the website www.vrmlsite.com where numerous articles about VRML are 

stored.  Likewise, information about X3D is available at http://www.web3d.org/x3d.html 

with many example models and scenes at 

http://web.nps.navy.mil/~brutzman/Savage/contents.html. 

Examples that show the power of X3D/VRML to render detailed objects follows.  

These objects are true 3D objects that can be viewed from any angle interactively.  This 

thesis develops a method to place objects, such as these examples, on large-scale 

landscapes using standard geographic coordinates. 

Figure 6.   AV-8B Harrier by Miguel Ayala at 
[http://web.nps.navy.mil/~brutzman/Savage/AircraftFixedWing/AV8B-Harrier-

UnitedStates/_pages/page01.html]  

 

Figure 6 is a model of US AV-8B Harrier aircraft.  This model can be used in a 

true 3D military simulation to make the system more visually realistic than the more 

common 2D simulation systems with 2D icons.  Here are some ground-vehicle examples 

that also come from the SAVAGE collection. 
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Figure 7.   US Bradley fighting vehicle by Renee Burgess 
[http://web.nps.navy.mil/~brutzman/Savage/GroundVehicles/M2A3/_pages/page04.html] 

 

There are also models of Soviet built equipment.  This T-72 tank could be used 

for enemy forces in a 3D battle. 
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Figure 8.   Soviet built T-72M tank by Joseph Chacon  
[http://web.nps.navy.mil/~brutzman/Savage/GroundVehicles/T72M/chapter.html ] 

 

Of course, there are limitations to VRML.  This next section addresses four 

significant limitations to VRML scene graphs that were encountered during the 

development of this thesis that are not typically addressed in VRML text books. 

The first significant limitation is VRML’s lack of function or method calls.  

VRML has script files that can receive data from the scene graph, perform computations, 

and output data back to the scene graph.  In fact, the script files can actually modify the 

scene graph.  However, modifying the scene graph is complicated and still does not allow 

scripts to communicate with each other like function calls do.  Data is passed around 

between objects in a VRML scene graph through the ROUTE command.  Unfortunately, 

ROUTE commands are one way and anonymous.  This means that a point of input for a 

ROUTE command cannot tell where the call came from and cannot return any data.  

Function calls would allow several objects in the code to call a function and send data 
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with each function call.  In this thesis, objects are placed on terrain with the object’s 

elevation and orientation determined by code.  Typically, there will be several segments 

of terrain in the scene.  Each segment is an independent object.  So, an object moving 

around within the scene can cross over several terrain segments.  However, the object’s 

position must be routed to/from a single terrain segment.  When the object moves from 

one object to another, the ROUTE statements involved would have to be changed to point 

to the new terrain segment.  This thesis overcomes this limitation by placing such 

functionality in a Java script.  Thus, how the code in this thesis works is not readily 

apparent to X3D/VRML programmers by looking at the scene graph.  Fortunately, the 

solution does allow the user to work solely with the VRML code without requiring any 

further Java programming.  Another important caveat for future work is that such code 

follows VRML 97 scripting conventions. 

The second limitation is the limitations imposed on the user because VRML 

rendering engines run inside a web browser.  Web browsers are designed to work with 

the internet extensively.  Since the internet is known to have plenty of viruses, Trojan 

horses, and other nasty surprises, web browsers have a lot of built in security.  One of the 

primary security measures is to limit the activities that the browser, and thus web sites, 

can do.  For example, web browsers do not allow programs that they are running to 

access the hard drive directly.  Doing so would allow web sites to place viruses on the 

user’s computer at will without the user knowing.  This does not mean that there is no 

access to local disk at all, though.  A VRML scene graph can have an Inline command in 

it that instructs the web browser to load another .wrl file into the current scene.  The .wrl 

file could be on the local hard drive or on the internet and the browser will attempt to 

complete the task.  However, this is indirect access to the hard drive.  The VRML 

programmer can only specify that additional scene graph data needs to be added to the 

current scene graph with the Inline command.  The fact that this sometimes requires the 

browser to access the local hard drive protects the end user by only allowing the browser, 

not the VRML programmer, to access the local drive.  Likewise, programs running inside 

a web browser cannot open up sockets on a network to communicate with other 

computers except under very controlled conditions.  The only exception that the author 

has seen to this policy is with Microsoft’s Internet Explorer which allows a program 
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running under a browser to open sockets when the code for the program is locally stored 

in a Java jar file that is located on the current PATH environment variable.  Normally, 

though, the program is only able to communicate small messages with the web site the 

program came from.  The result of this is limiting the ability of any program running in a 

web browser, to include VRML and X3D programs, to request, retrieve, and send data.  

Since rendering terrain requires a lot of data, this situation hurts this thesis project.  The 

examples included with this thesis place all the necessary code and data on the client 

computer ahead of time so that the programs run without the user having to reduce the 

security settings on his or her computer.  A new rendering engine called Xj3D, located at 

www.web3d.org/TaskGroups/source/xj3d.html, can operate as a stand-alone application 

that can render X3D/VRML, access the local hard drive, and open sockets over the 

internet.  The program is currently still in development at Milestone 8, but it has 

demonstrated a powerful rendering engine that is fully compatible with existing VRML 

2.0 models and scenes.   This locally loaded and launched application is able to access 

both the hard drive and the internet so that terrain data can be downloaded, stored, and 

used at runtime.   

The third limitation is a performance limitation.  This issue is definitely arguable, 

but this author believes that VRML has some flaws that undermine the system’s potential 

performance.  Most 3D scenes cannot be built out of primitive shapes such as spheres, 

cones, cylinders, and boxes.  The real world is just simply not set up that way.  So, users 

have to build 3D models of the objects in the world manually.  Building these objects 

requires defining polygons or faces that are used to build whole objects.  Most rendering 

engines give the user options when building these faces.  For example, in OpenGL, the 

user can build objects out of triangle strips, triangle fans, quads, quad strips, polygons, 

and more.  In VRML, the only construct is the indexed face set in which the user defines 

individual polygons.  How to build an indexed face set is covered in more detail in the 

next chapter.  OpenGL gives the user several options because some of the methods of 

building polygons, such as triangle strips and triangle fans, are rendered much more 

efficiently than plain polygons.  VRML does not let the user help the rendering engine by 

providing it some optimized polygon constructs.  The VRML indexed face set does not 

even force the user to define polygons that are coplanar and convex.  If the user builds 
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polygons that are not coplanar and not convex, then the VRML rendering engine is 

forced to break the polygons up into smaller polygons that are coplanar and convex.  

These features can be helpful to novice graphics programmers, but intermediate to 

advanced programmers will be much more interested in performance and will be willing 

to build objects out of more efficient triangle fans and strips if it means better 

performance.  VRML does not even present this as an option. 

The fourth limitation is the lack of support for double-precision variables.  VRML 

only supports single-precision variables or float variables.  VRML was built to work over 

the internet which is very slow at transferring data when compared to hard drive and 

direct memory access speeds.  The internet was even slower during the 1990’s when 

VRML was developed.  Single-precision variables take only half as much memory as 

double-precision variables.  So, by limiting data to single precision variables, VRML 

files are smaller and easier to download.  This may be part of the reason why VRML only 

supports single-precision variables.  Another possibility is that the designers envisioned 

VRML being used for relatively small scenes where single-precision values are precise 

enough to accurately place and render the objects.  Whatever the reason for the exclusion 

of double-precision values, the limitation exists.  The result is that defining scenes on a 

planetary scale cannot be done accurately enough to prevent visual artifacts.  Once again, 

X3D is addressing this limitation.  The X3D specification calls for support of both single 

and double-precision variables.  So, once native X3D rendering engines are available, 

double precision variables will be available.  Until then, though, the geoVRML extension 

to VRML will have to suffice. 

2. GeoVRML Extensions 

GeoVRML is an extension to VRML developed primarily by Dr. Martin Reddy of 

SRI.  The purpose of GeoVRML is to allow VRML to render scenes on a global scale.  

The GeoVRML extension can be downloaded and installed royalty free from 

http://www.geovrml.org/1.1/download.  Here are some examples of the types of scenes 

that can be created using the GeoVRML extension. 

Figure 9 shows Squaw Valley built from a height field with texture maps and was 

taken from http://www.ai.sri.com/~reddy/geovrml/examples/squaw/squaw.wrl.  Texture 

maps alone can make a realistic looking scene.  However, placing the texture maps over a 
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3D representation of the terrain as shown makes the scene much more realistic as the 

mountains and valleys are shown at their true scale. 

Figure 9.   Squaw Valley by Martin Reddy  
[http://www.ai.sri.com/~reddy/geovrml/examples/squaw/squaw.wrl ] 

 

Rendering global scenes requires double-precision variables, so GeoVRML stores 

double-precision values as strings and converts them to double-precision variables inside 

Java code when needed.  The solution works quite well, but several VRML had to be 

replaced by new GeoVRML nodes.  These nodes work with the double-precision values 

stored as strings and the GeoVRML package to build scenes on a global scale.  These 

scenes are then transformed into single-precision values that the VRML rendering engine 

can display.  Basically, the GeoVRML package takes geographic positions specified in 

latitude and longitude or in UTM, converts them into Geocentric Coordinates, and then 

translates them into a local frame that can be stored in single-precision variables.  This 

deserves a more extensive look. 
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First, there are some settings that GeoVRML depends upon to do conversions.  

The first is the GeoSystem setting.  This setting refers to the coordinate system a 

particular string is in.  For example, a latitude and longitude grid uses a GeoSystem of 

“GD” or “GDC”.  The GeoSystem can also specify the geoid such as “WE” which is the 

default geoid and the most common.  The final GeoSystem variable would look like “GD 

WE” or “GD” “WE”.  Alternatively, UTM coordinates could be specified with “UTM 

Z10” to specify a UTM coordinate in zone 10 or “UTM” “Z10”.  Of course, any of the 60 

zones can be specified.  Finally, a geocentric coordinate can be specified with a 

GeoSystem of “GCC” or “GC”, but this should be avoided because the system is only 

present to allow the computer to render the scene.  GCC coordinates are very difficult for 

people to work with.  Users should always let GeoVRML convert coordinates to GCC so 

that they are consistent with all other GCC coordinates that GeoVRML automatically 

generates behind the scenes.  Here are some example coordinates with the appropriate 

GeoSystem. 

Latitude and Longitude Example: 

geoSystem “GD”, “WE” 

position “29.7118644 52.6271186 0" 

Universal Transverse Mercator Example: 

geoSystem “UTM”, “Z13” 

position “4039260 455220 0” 

Notice that each position has three numbers.  In the first example, these numbers 

are the latitude, longitude, and elevation.  In the second example, the numbers are the 

northing, easting, and elevation.  I could not find the limit on how many characters can be 

placed in one string, it could vary from browser to browser, but rest assured that strings 

can hold a significant number of digits allowing enough precision in the coordinates.  

Note that all of the numbers in the examples are within the range of values a single-

precision variable can hold.  In fact, the UTM example uses integers which can be held 

exactly in integer variables.  The catch is that floating point numbers such as single-

precision numbers are not stored as integers.  Instead, the above UTM coordinates are 
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stored as 4.039260E6, 4.55220E5, 0.0E0 when stored as float variables, just like the 

latitude and longitude values.  So, the question is how accurate is the fractional value?  

Here is where the numbers get confusing.  The problem is that the computer stores values 

in binary while people use decimal values.  The two systems do not map well when 

decimal points are involved.  For example, if one bit is used to hold the value after a 

decimal, then it can only hold two values: .0 and .5.  If two bits are used, then four values 

are possible: .0, .25, .5, and .75.  Notice that there are gaps between these numbers that 

can be represented by decimal values.  This is where accuracy is lost.  Take the example 

with two bits of precision trying to represent the decimal number .3.  The closest 

representation is .25 which is far enough off to make a noticeable difference.  Single-

precision numbers use 32 bits to store the exponent and the fraction together.  This results 

in a lot more precision than the 2 bit example, in fact, there is enough precision to 

represent anything in the screen space of even high end displays of 1600 by 1200 pixels.  

However, when coordinates are specified on a global scale, single-precision numbers are 

not sufficient.  The bottom line is that with single-precision values, coordinates can only 

be specified to about 8 meters of resolution when specifying coordinates in terms of 

latitude and longitude or UTM.  This means that when an object’s location is specified, it 

can be displayed up to 8 meters from the exact location specified due to lost precision.  

What is even worse is that the object’s location can move around as the viewpoint 

changes within the 8 meter radius of its actual specified location.  Double-precision 

variables, however, increase the accuracy almost to the microscopic level of precision at 

a global level. 

The second setting that GeoVRML depends upon for properly rendering terrain 

on a geographic scale in called the GeoOrigin.  The GeoOrigin is a reference point that 

all the coordinates calculated are offset against.  What this means is that this point is 

converted to GCC space.  Then, the X, Y, and Z values of this GCC coordinate are 

subtracted from the X, Y, and Z values of every point that is created for the scene.  This 

effectively strips away most of the value leaving a fractional value that can be held within 

a single-precision variable.  For example, assume that a GeoOrigin’s X value was 

calculated to be 6,132,248.1643872 and is held in a double-precision variable.  A 

coordinate is then calculated with an X value of 6,132,074.732843.  The X value for this 
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coordinate cannot be held in a single-precision variable without losing precision.  

However, when the GeoOrigin’s X value is subtracted from it, the result is -173.4315442 

which can be stored in a single-precision variable with a lot more accuracy.  This final 

value is what is passed back to the VRML rendering engine as the X value for that 

coordinate.  GeoVRML does this translation to every coordinate value including the 

coordinate values that define where the viewpoint into the scene is.  The result is that the 

particular portion of the earth that the scene is rendering is shifted much closer to the 

origin of the screen space.  This eliminates a lot of the digits in the values leaving them 

small enough to be stored in single-precision variables.  As long as the GeoOrigin chosen 

is close enough to the coordinates in the scene, the final translated coordinate values will 

be accurate enough to produce a correctly rendered scene.  So, the best choice for a 

GeoOrigin is one that is close to the center of the scene.  However, choosing a GeoOrigin 

that is located at an extreme corner of the scene is typically close enough.  The only 

remaining question with the GeoOrigin is what to use when the whole planet needs to be 

displayed?  The answer is to use a GCC coordinate with zeros for the X, Y, and Z values.  

This is the center of the earth and one of the few times when entering a value in GCC 

coordinates makes sense.  This will result in the GeoOrigin’s X, Y, and Z values being 0.  

So, when coordinates have these values subtracted from them there is no change.  This 

results in a loss of precision when casting the double-precision values to single-precision.  

However, the loss ends up being less than a pixel in screen space when the viewpoint is 

far enough away from the earth for the entire planet to be displayed at one time. 

Now for some details about how the GeoVRML code works.  There are script 

files for most of the nodes in the GeoVRML extension such as GeoLocation, 

GeoPositionInterpolator, GeoElevationGrid, etc.  However, these script files are all 

dependent upon the geovrml.class Java file to perform their operations and work together.  

Therefore, this thesis is focused on this particular class file.  There are five groups of 

methods that constitute most of the functionality of the class.  First, there are the methods 

that determine the GeoOrigin.  These are the setOrigin and getOrigin methods.  The 

setOrigin method takes a string representing the coordinates of the GeoOrigin and 

another string representing the GeoSystem.  A GCC coordinate is calculated from these 

values and stored in a class variable.  The getOrigin method returns the contents of the 
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origin as a GCC coordinate.  Whenever a GeoVRML object is created, setOrigin must be 

called to initialize the object before any other operations are used. 

The second group of methods is the getCoord and getCoords methods.  These 

methods are used to transform coordinates that are in latitude and longitude or in UTM to 

GCC.  Once the conversion is completed, the current GeoOrigin is subtracted from the 

values of the GCC coordinate.  These methods are the only methods that should be used 

to determine GCC coordinates.  There are three versions of both of these methods that 

allow the user to specify the parameters in different forms. 

Third, are the geoCoords methods.  These methods do the opposite of the 

getCoord methods.  These methods take GCC coordinates and transform them back into 

UTM or latitude and longitude.  Once again, any time a GCC coordinate needs to be 

converted, these me thods should be used because they properly reapply the GeoOrigin to 

the coordinates before transforming them.  Also like the getCoord methods, there are 

three geoCoords methods that accept various parameters. 

The fourth group of methods is the getLocalOrientation methods.  These methods 

are not used very often.  In fact, the GeoLocation and GeoViewpoint nodes appear to be 

the only nodes that use these methods.  However, the methods are extremely important.  

These methods calculate a rotation vector and angle that will orient the viewpoint so that 

the terrain appears right-side-up.  The problem is that when a viewpoint is focused on a 

small area of the planet, the positive Y direction will probably not represent “up”.  Take 

for example the South Pole.  If you look directly at a globe, the South Pole is at the 

bottom of the globe and “up” from the South Pole is actually toward the floor of the room 

the globe is in.  Therefore, the viewpoint must be turned upside down when viewing 

terrain at the South Pole.  Likewise, “up” along the equator is parallel to the floor of the 

same room.  Using one of the getLocalOrientation methods returns a VRML rotation 

node that will orient anything it is applied to so that the object’s previous “up” direction 

(the positive Y direction for most models) will not be pointing in an unrealistic direction. 

The fifth and final group of important methods is the VRMLToString methods.  

These methods convert VRML strings to Java strings.  Actually, only the VRMLToString 

method that takes an MFString parameter is important.  For SFString variables, just 
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simply calling the getValue method of the SFString is sufficient.  With the MFString 

variables, though, an error can result using certain browser plug-ins.  Just be careful not 

to use the toString methods of VRML string objects.  These always contain quotation 

marks which must then be manually stripped out.  Using getValue or VRMLToString is 

much easier. 

Working with GeoVRML can be very simple.  Simply remember to set the 

GeoOrigin first.  Then use getCoord or getCoords to convert coordinates to GCC so that 

they can be displayed by the VRML rendering engine, and to always take GCC 

coordinates back to UTM or latitude and longitude using the geoCoords method.  Finally, 

remember to use the getLocalOrientation method to get a rotation node for viewpoints 

and objects so that they appear right-side-up in the scene.  This is a fairly complete 

toolkit.  All that is really lacking is support for transforming coordinates from UTM to 

latitude and longitude and vice versa.  This thesis adds functionality to the GeoVRML 

extension to VRML, but all of the additional functionality is at a level above this class.  

The script nodes developed for this thesis are as dependent upon the GeoVRML class as 

the nodes provided in GeoVRML 1.1. 

3. X3D Specification 

X3D represents the next generation of interactive 3D graphics designed for the 

Web.  The specification is compliant with XML which brings benefits such as the ability 

to translate X3D files to other formats with XSLT.  Currently, this is used to translate 

X3D files to VRML files for display in VRML-enabled web browsers.  Likewise, X3D 

files can be validated using XML schemas.  The specification is available at 

http://www.web3d.org by following the link to specifications.  The specification 

currently defines over 130 nodes for building 3D scenes.  Readers are encouraged to visit 

the site and read the specification.  The actual X3D editor is available from the same 

website at www.web3d.org/TaskGroups/x3d/translation/README.X3D-Edit.html.   



31 

Figure 10.   X3D-Edit main screen [http://www.web3d.org/x3d.html] . 

 

A native X3D rendering engine is being built called Xj3D.  The project is an open 

source project whose home is currently located at 

http://www.web3d.org/TaskGroups/source/xj3d.html.  At the time of this writing, version 

7 was available with version 8 in a beta state.  The project is a native X3D engine. 

F. SUMMARY 

This chapter discussed how positions on the earth are described using three 

separate systems.  The first two are common geographic referencing systems used all 

around the world while the third was a computer specific system needed to help the 

computer render geographic scenes.  Next, DTED, a common source of terrain elevation 

data, was explored as a basis for building 3D models of terrain.  XML was then 

introduced as a technology that can help make accessing and validating terrain data easier 
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and more universal.  Finally, X3D and VRML were discussed.  These two rendering 

engines are needed to actually create the visual displays from the 3D models that this 

thesis deals with. 
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III. TERRAIN RENDERING ALGORITHM IMPLEMENTATION 

A. INTRODUCTION 

This section details the code that was developed for this thesis.  First, the 

GeoManager is introduced which allows multiple pieces of terrain to be loaded and used 

with minimal effort and which allows objects to access the data in the pieces of terrain 

through a GeoLocation3 object.  Second, the GeoTerrainGrid is described which does the 

majority of the work covered in this thesis in particular, building the 3D model of a 

section of terrain and calculating the elevation and orientation of arbitrary positions on 

this terrain.  Finally, the GeoLocation3 node is covered which allows objects to use the 

technology developed.   

B. GEOMANAGER 

In the previous chapter, a Java solution to VRML’s lack of support for function 

calls was introduced.  This solution is the GeoManager object.  The GeoManager object 

provides a way for the GeoLocation3 object to locate a GeoTerrainGrid that holds terrain 

data for a specific location defined in GDC or UTM coordinates.  For this to work, the 

GeoManager must be able to reach all the GeoTerrainGrids in the scene and every 

GeoLocation3 must be able to reach the GeoManager.  The system also depends upon 

only one GeoManager existing within the scene.  In order to ensure that only one 

GeoManager exists, the constructor had to be private.  With a private constructor, 

instances of GeoManager can only be created from within the GeoManager class.  Thus, 

a public, static class is needed that creates one and only one instance of a GeoManager.  

The getGeoManager method does this.  The first object that calls getGeoManager causes 

a new GeoManager to be created and returned.  All subsequent calls to getGeoManager 

return the same GeoManager instance without creating a new one.  Every 

GeoTerrainGrid and GeoLocation3 object can call getGeoManager because the method is 

static. 

Inside the GeoManager class, there are methods written specifically for 

GeoTerrainGrids and GeoLocation3 objects.  For GeoTerrainGrids, there is addGrid 

which allows a GeoTerrainGrid to announce its existence to the GeoManager.  Every 

time this method is called, the GeoManager stores a reference to that GeoTerrainGrid in a 
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vector.  Every GeoTerrainGrid must call this method when created so that the 

GeoManager can reach every GeoTerrainGrid in the scene.  The method for 

GeoLocation3 objects is the getGrid method.  This method takes a location as a 

Gdc_Coord_3d, which holds latitude and longitude values, and returns a GeoTerrainGrid 

that contains that location.  This allows GeoLocation3 to get a GeoTerrainGrid and use it 

to determine the proper elevation and orientation.  These function calls are shown in 

Figure 11.  There are more methods in GeoManager, but those were specifically written 

for an experiment where a military simulation was listened to and displayed in 3D.  The 

experiment was successful for a few entities, but more work is needed on dynamically 

loading and unloading large numbers of GeoTerrainGrids and entities such as tanks and 

helicopters before the code will be useful to the military.  The SAVAGE website will 

contain future versions of this code to address these issues. 

Figure 11.   Depiction of how GeoManager is accessed 

 

C. GEOTERRAINGRID NODE 

The GeoTerrainGrid object is responsible for actually rendering a piece of terrain 

based on a height grid and for providing elevation and orientation data for objects that 

reside within the boundaries of the grid.  There are three major functions that this code 

performs.  The first is creating an indexed face set that represents the terrain described by 

the height field.  The second is determining the elevation at an arbitrary point within the 

boundaries of the grid.  The third and last is determining the proper rotation to apply to an 

object so that it is placed properly on the terrain.  Each of these functions is covered in its 

own section.  The GeoTerrainGrid is a direct descendent of the GeoElevationGrid 
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contained in the GeoVRML extension to VRML.  All of the original GeoElevationGrid 

code is still in GeoTerrainGrid, although some of it had to be commented out with new 

code replacing it.  All of the changes are clearly marked.  Here are the major changes 

made in GeoTerrainGrid.  First, GeoTerrainGrids are capable of working with 

GeoManagers so that objects can travel across several GeoTerrainGrids effortlessly.  

Second, the elevation of any location within the boundaries of the GeoTerrainGrid can be 

estimated and retrieved (if the location coincides with an elevation posting, then the exact 

location is given).  Third, a rotation vector can be retrieved that will rotate an object to 

align its up vector with the normal of the terrain at that location.  Finally, the indexed 

face set, coordinate list, and height fields are not stored at class level anymore.  Instead, 

they are retrieved when needed.  This significantly reduces the memory footprint of a 

GeoTerrainGrid over a GeoElevationGrid, but does incur some overhead every time data 

needs to be retrieved.  These savings quickly become significant in the example 

GeoTerrainGrids built in this thesis.  Every sample GeoTerrainGrid in this thesis covers 

an area that is approximately 1.8 km by 1.8 km in DTED level 2 data.  The height fields 

have 3,721 entries total including both axis.  These are single-precision floating point 

values taking 4 bytes each.  Thus, each height field fills 14.5 kilobytes of memory.  The 

indexed face sets built from these height fields have 3,721 coordinates, one coordinate 

built from each height field value.  Every coordinate has an X, Y, and Z value that is a 4 

byte, single-precision floating point value.  Thus, the coordinate list occupies 43.6 

kilobytes of memory.  The coordinate list of every indexed face set requires 4 integers for 

each triangle.  Since the height array builds a grid that is 60 squares by 60 squares, 7,200 

triangles are needed.  This is another 112.5 kilobytes of data.  Thus, each GeoTerrainGrid 

built for this thesis requires 14.5 kilobytes for the height array, 43.6 kilobytes for the 

coordinate list, and 112.5 kilobytes for the coordinate list.  The total is 170.6 kilobytes for 

a 1.8 km by 1.8 km area.  When the GeoTerrainGrid is built, there are two copies of all 

these data structures, one in the VRML data and one in the Java code.  To save memory, 

the Java script code drops its copy of the data when finished saving 170.6 kilobytes.  The 

multiple grid example has 16 GeoTerrainGrids and saves 2.73 megabytes of memory 

using this technique.  Of course, one copy of the data still exists within the VRML code 

and is retrieved by the Java script code when needed. 
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Here are two screen shots of GeoTerrainGrids.  Figure 12 shows shaded terrain. 

Figure 12.   GeoTerrainGrid example with shaded terrain 

 

Figure 13 shows the same terrain in wire frame mode.  In this view, how the 

elevation grid is built out of triangles is apparent.  Notice how the shaded terrain is very 

smooth despite being created by triangles with straight edges. 
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Figure 13.   GeoTerrainGrid shown in wire-frame mode 

 

1. Building an Indexed Face Set from a Height Array 

A height array is simply an ordered list of numbers where every number 

corresponds to a measured elevation point on a surveyed piece of terrain.  The height 

values are typically taken at evenly spaced intervals that coincide with one of the 

geographic coordinate systems described in the previous chapter such as latitude and 

longitude.  Note that GeoCentric Coordinates do not work because there is no elevation 

component.  The three values of X, Y, and Z are all required to determine a position.  

None of these corresponds to height.  The height is implicitly contained in the coordinate, 

but creating coordinates based only on a height field and a start point is not possible.  

Therefore, the height arrays in this thesis must be based on latitude and longitude values 

or UTM values.  The GeoElevationGrid that the GeoTerrainGrid descends from has this 

same requirement.  If the height values from the height array are arranged in accordance 

with their geographic coordinates, then a checkerboard pattern forms with every corner of 

each square of the checkerboard being a height value.  Building an indexed face set from 
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this height array is simply a matter of connecting the dots of height values in this 

checkerboard pattern in the proper order. 

Figure 14.   How a height array is turned into an indexed face set 

 

Determining the proper order for connecting the points of an array of height 

values requires some knowledge of computer graphics.  In order for a computer to render 

an indexed face set, each face in that set must represent a convex polygon where all 

vertices are coplanar.  Some graphics engines, such as VRML discussed in the previous 

chapter, relax these rules for the end user, but these engines are then forced to break up 

the polygons provided by the user into smaller polygons that are convex and coplanar.  

The simplest method for building polygons that are guaranteed to be coplanar and convex 

is to build triangles.  When building an indexed face set from a height array, individual 

triangles, triangle strips, or triangle fans are generally used.  This thesis uses individual 

triangles because VRML does not explicitly support triangle strips or fans.  The 

individual triangles are all still part of an indexed face set and are connected to each other 
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because they share vertices.  Therefore, the final rendering looks the same as one from 

triangle strips because the individual triangles were built in the same fashion.  Each 

square of the before mentioned checkerboard is divided into two triangles.  The first 

triangle goes from the bottom-left corner to the upper-right corner to the upper-left 

corner.  The second triangle goes from the bottom-left corner to the bottom-right corner 

to the upper-right triangle.  When every square in the checkerboard is divided up in this 

fashion, a complete indexed face set is built that when sent through a rendering engine 

will graphically depict the terrain in 3D space. 

Figure 15.   Building a grid square as two triangles 

 

Building the indexed face set is accomplished using two for loops with one nested 

within the other.  These for loops step through the entire array of height values one value 

at a time building one coordinate for each elevation posting.  The for loop uses a helper 

method in the GeoVRML class called addCoord.  The method is simple, it takes the 

geoGridOriginArray passed to it, which represents the south west corner of the 

GeoTerrainGrid that must be set by the user when defining the GeoTerrainGrid node, and 

adds the values for the change in the X and Z directions.  All this method does is fill the 

array passed to it called new_coord.  The geoGridOriginArray’s X and Z values are 

added to the values of the offsets for X and Z passed in.  The elevation is also the 

addition of the elevation from the height array and the elevation of the 
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geoGridOriginArray.  So, if DTED is used, then the user must always be sure to set the 

elevation of the geoGridOriginArray to zero to prevent artificially raising the terrain 

elevations.  These additions are so simple that placing them in a special method in 

another class seems inefficient when compared to just placing the three lines of code in 

the method in the nested for loop instead.  Being in a nested for loop causes this method 

to be called potentially thousands of times.  Eliminating the overhead of thousands of 

method calls makes the code execute faster.  After addCoord calculates the correct values 

for X, Z, and elevation, the getCoord method is used to convert this coordinate to a 

Geocentric coordinate.  This converts the coordinate to GCC and applies the GeoOrigin 

so that the value can be stored in a single-precision variable without losing significant 

precision (considering the GeoOrigin is close enough to the coordinate).  The coordinate 

is then stored in an array that holds all the coordinates.  Likewise, a list of texture points 

is also updated.  However, the texture points are confusing because specifying such a list 

is usually only needed if the texture map is not supposed to be mapped exactly to the 

indexed face set.  In GeoElevationGrids, the texture is always mapped exactly unless the 

user built a custom set of texture coordinates and placed them directly in the 

GeoElevationGrid or GeoTerrainGrid.  Thus, if the user does not define a custom texture 

coordinate list, then the one that is generated simply does the default behavior for an 

indexed face set.  In fact, when the code was temporarily commented out, nothing 

changed.  However, the author cannot verify that no cases where this code is needed 

exist.  Likewise, to ensure backward compatibility with the GeoElevationGrid, the code 

was left in. 

The next step is building a list of indices for the indexed face set.  All of the 

coordinates have now been translated into GCC and have had the GeoOrigin applied to 

them to maintain precision.  What is left is to specify which of these coordinates to use to 

build polygons.  For example, the first triangle is built using coordinate index 0 which 

was the first coordinate built.  The second vertex is to the right one column of values and 

up one row of values.  Exactly what index value is associated with this vertex depends 

upon how many X values are in the height array.  The third vertex is directly above the 

first coordinate index and directly to the left of the second coordinate index.  The fourth 

coordinate is a flag value of -1 which tells the VRML engine that this is the end of the 
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first polygon.  The VRML engine automatically closes the polygon by connecting back to 

the first vertex defined, making a triangle.  The fifth coordinate index refers to the first 

vertex of the second triangle for each square defined by the height array.  This is equal to 

the first coordinate vertex of the first triangle.  The sixth coordinate vertex is the 

coordinate directly to the right of the fifth coordinate vertex.  The seventh coordinate 

vertex is directly above the sixth.  Finally, the eighth coordinate vertex is another -1 flag 

signaling the end of the polygon.  Thus, a square defined by four members of the height 

field has now been broken into two triangles.  This is repeated for every such square in 

the GeoTerrainGrid.  Figure 16 shows the order in which the vertices of the grid square 

are referenced, remember that two -1 entries are also recorded to signify the end of a 

polygon in VRML.  The coordinate list and the coordinate index list define the indexed 

face set that represents the terrain.  Thus, both are passed back to the VRML rendering 

engine along with the texture coordinate list. 

Figure 16.   Depiction of building coordinate index list 

 

Before leaving the topic of building the indexed face set, the topic of explicitly 

defining the rendering of the indexed face set needs to be presented.  The original 

GeoElevationGrid defined the terrain using grid squares.  Since these grid squares are 

rarely coplanar, the underlying rendering engine divided the grid square into two 

triangles.  There are three systems for dividing these grid squares up shown in Figure 17.  
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Figure 17a shows the grid squares before they are divided, which is how the original 

GeoElevationGrid defined the terrain.  This system cannot be rendered as it stands.  The 

grid squares must be broken into triangles to guarantee that the polygons are coplanar and 

convex.  Figure 17b shows the same grid squares divided into triangles by adding a line 

segment to each grid square that starts in the lower left corner and ends in the upper right 

corner of the grid square.  This is how the GeoTerrainGrid code builds the terrain 

representation.  With this breakdown, the final rendering has been explicitly defined and 

cannot be altered by the underlying rendering engine.  Figure 17c shows the same 

technique, but divides the grid squares by connecting the upper-left and lower-right 

corners.  Finally, Figure 17d shows an arbitrary mix of dividing up the grid squares.  This 

is how the terrain of a GeoElevationGrid is rendered after the grid squares are broken up 

by the rendering engine.  This pattern makes it impossible to know exactly how a piece of 

terrain is being rendered and can cause artifacts. 

 

Figure 17.   Explicitly defining terrain rendering 

 

Figure 18 depicts a typical problem with not defining the terrain rendering 

explicitly.  The grid square shown has high elevation postings in both its upper-left and 

lower-right corners while the lower-left and upper-right posting are low elevation 

postings.  The problem is determining if this pattern of elevation postings represents a 

ridgeline (Figure 18b) or a saddle (Figure 18c).  With DTED data alone, the correct 

rendering cannot be determined, but it can at least be consistent.  With the 

GeoElevationGrid, the rendering could switch between Figure 18b and Figure 18c 

whenever the viewpoint moved.  With the GeoTerrainGrid, Figure 18c is always 
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rendered.  This allows determining the correct elevation and orientation of the rendered 

terrain at any location. 

Figure 18.   Explicitly rendering terrain 

 

2. Calculating Elevation at an Arbitrary Point 

The first step to calculating the elevation at an arbitrary point is to determine 

which GeoTerrainGrid the point falls within.  This task falls to the GeoManager object.  

The getGrid method accomplishes this by simply going through the list of 

GeoTerrainGrids and calling the checkBounds method of each one.  The 

GeoTerrainGrids are not in any specific order other than the order in which they were 

created.  Therefore, the search is simply a linear search with an average performance of 

having to check half of the GeoTerrainGrids before finding the correct one.  The worst 

case scenario is that there is no GeoTerrainGrid that covers the coordinate in question 

which requires every GeoTerrainGrid to be checked before determining that the 

coordinate is not covered.  Obviously, this could be improved upon, but the linear search 

was adequate for the scope of this thesis.  The checkBounds method of each 

GeoTerrainGrid only checks latitude and longitude values.  So, when getGrid is passed a 

coordinate, it must be in latitude and longitude.  To ensure this, the method only accepts a 

Gdc_Coord_3d as its argument which is a coordinate in latitude and longitude.  Support 

for other methods could be added.  However, UTM grids, the only other coordinate space 

available in GeoVRML, are easily converted to GDC before being passed to the getGrid 

method of GeoManager.  This will be discussed further under the GeoLocation3 section. 

The second step to calculating the elevation at an arbitrary point is to determine 

which polygon within the GeoTerrainGrid the coordinate falls within.  This is handled by 
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the getElevation method of GeoTerrainGrid.  This is a two step process.  The first step is 

to determine which grid square of the height array this point falls within.  This is done by 

determining the values of partialX and partialZ.  These variables are integers that 

represent how far to travel through the height array in the X and Z direction to reach the 

lower left corner of the grid square that holds this coordinate.  The calculation is easy.  

The value of the south west corner of the GeoTerrainGrid is subtracted from the 

coordinate.  The result is divided by the spacing value between values in the X direction 

and values in the Z direction.  Only the integer portion is kept.  Knowing which grid 

square is not enough, though.  Each grid has two triangles and the coordinate can only be 

located within one of them. 

Thus, the third step is determining which triangle within the known grid square 

holds the coordinate.  The variables fractionX and fractionZ are used to do this.  First, the 

variables are set to the fractions that were dropped to get the partialX and partialZ values.  

These fractions are compared to determine whether the coordinate is in the upper left 

triangle or the lower right.  However, both triangles use the lower left corner of the grid 

square as their first coordinate.  So, the first value of the triCoords array is filled with the 

coordinate of the lower left grid point.  The elevation is looked up in the height array, but 

the other two coordinates are calculated.  It does not matter of the coordinate system is 

UTM or GDC.  In fact, any coordinate system that has elevation as one of its three 

components will work with this code.  The if statement determines which triangle to use.  

If fractionX is greater than fractionZ, then the coordinate falls in the lower right triangle.  

Therefore, the lower right corner of the grid square is the second coordinate while the 

upper right coordinate is the third.  Otherwise, the upper right corner is the second 

coordinate and the upper left corner is the third coordinate.  Technically, keeping these 

points in counter-clockwise order is not critical for determining an elevation, but it is 

always a good practice. 
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Figure 19.   Determining which polygon a point lies within 

 

These three coordinates define the plane that holds the coordinate needed.  The 

normal of this plane is needed to determine the proper elevation of an arbitrary point.  

First, get two vectors from the three coordinates.  This is simple subtraction.  The first 

vector is the first coordinate minus the third coordinate.  The second vector is the first 

coordinate minus the second coordinate.  These vectors have an X, Y, and Z component, 

of course.  The cross product of these two vectors is the normal vector for the plane.  This 

normal along with one of the coordinates can be used to determine any other point on the 

plane.  Apply the dot product to the normal and the difference between the known point 

and the unknown point.  This dot product must equal zero.  Here is the equation: 

  n · (r – r0) = 0 

where n is the normal, r is a known point, and r0 is the unknown point.  Since the only 

unknown is actually the elevation value of the unknown point, there is only one variable 

to solve for.  So, a simple calculation retrieves the elevation which is then returned to the 

calling method. 

3. Calculating Orientation at an Arbitrary Point 

Calculating the orientation at an arbitrary point is similar to calculating the 

elevation, but GCC coordinates must be used.  This sounds strange because GCC 

coordinates could not be used to determine the elevation because there was no elevation 

value to solve for.  Elevation was embedded within the X, Y, and Z values.  Any 

coordinate system that has one of its three values as elevation will not work for 

determining the proper elevation.  The reason is that these systems are two dimensional 

systems – even latitude and longitude because it is not 3D until it is converted from 

spherical coordinates to X, Y, and Z values in 3D space.  Think about having elevations 

that are all positive, i.e., almost any land area of the planet.  Higher elevation is always a 
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greater positive value.  But in the southern hemisphere, increasing elevation could 

actually cause the X, Y, and Z components of the GCC coordinates to become greater 

negative numbers.  So, GCC values are needed which means getting the coordinates for 

the polygon from the coordinate list of the indexed face set instead of from the height 

field. 

Determining the grid square that the coordinate is in and the triangle within that 

grid square is the same as it was for finding the elevation in the last section.  So, it will 

not be repeated.  However, when retrieving each individual coordinate, the value of the 

GeoOrigin must be added to that coordinate.  Remember that the GeoOrigin was 

subtracted from each GCC point after it was converted from UTM or latitude and 

longitude to preserve precision when cast to a single-precision value.  This origin must be 

added back in to get the actual GCC location instead of the translated GCC location.  Of 

course, this means using double-precision variables to hold the GCC location.  

Calculating the normal is also the same as it was when determining the elevation.  First, 

two vectors are found from the three coordinates, and then the normal is found by taking 

the cross product of these two vectors.  In this case it is critical that the coordinates be in 

counter-clockwise order and that the vectors be determined from taking the difference of 

the first coordinate and the second coordinate and then by taking the difference of the 

first coordinate from the third coordinate.  If this formula is not followed, then the normal 

could be pointing directly into the terrain instead of directly out of the terrain and the 

rotation value will flip the object upside down on the terrain. 

The next step is to take the cross product of the normal vector and the vector that 

represents ‘up’ for the object.  In VRML, ‘up’ is defined to be the positive Y axis.  This 

thesis assumes that all objects follow this standard convention.  However, the code could 

be modified later to use a different value or to allow the user to define an ‘up’ vector.  

Having the user enter in an ‘up’ value seems to be an unnecessary complication, though, 

so the VRML standard of the positive Y axis as ‘up’ was used.  This cross product gives 

a vector perpendicular to both the normal of the terrain and the ‘up’ direction of the 

object.  The object can rotate around this axis to bring its ‘up’ vector to coincide with the 

normal vector of the terrain.  All that is left is to determine how far around this vector to 

rotate.  Of course, this rotation vector will have to be cast to single-precision values 
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which could lose precision.  Therefore, the vector is normalized first by dividing each of 

its components (X, Y, and Z) by the magnitude of the vector.  The normalized rotation 

vector should always work fine even after being cast down to single-precision. 

Calculating the angle of rotation to go with the vector is not too difficult.  The 

cosine of this angle is equal to the dot product of the ‘up’ vector and the normal vector 

divided by the magnitudes of the two vectors.  Mathematically, the formula looks like the 

following: 

 n · u = ||n||*||u|| * cosF  

where n is the normal vector of the terrain, u is the ‘up’ vector (0, 1, 0) in VRML, and F 

is the angle between the vectors.  Solving for F is simple.  See the code for a working 

example. 

D. GEOLOCATION3 NODE 

Now that the GeoTerrainGrid is capable of determining the proper elevation and 

orientation for an arbitrary point, a node to apply these to objects is needed.  That is what 

the GeoLocation3 node does.  The reason for the 3 at the end of the name is that there 

already is a GeoLocation node and a GeoLocation2 node in the GeoVRML package.  

Therefore, this proposed new node is GeoLocation3.  The node functions identically to 

the original GeoLocation as its default value.  However, there are two additional 

Booleans called autoElevation and autoSurfaceOrientation that the user can set.  When 

autoElevation is true, the coordinates of the GeoLocation will always be adjusted to the 

surface of the terrain at that location.  There are three situations that cause the geoCoords 

to be set to the terrain.  The first is at initialization if autoElevation is true.  The second is 

anytime that the set_geoCoords event is fired and autoElevation is true.  Thus, if a route 

is set up that continually updates the location of a GeoLocation3, then the elevation will 

be set automatically every time.  The third situation is anytime that the 

set_autoOrientation event is fired and set to true.  However, if the event is called again 

and the value is set to false, then the original elevation will not be restored. 

The autoSurfaceOrientation variable determines whether the objects contained 

within the GeoLocation3 construct are oriented to the terrain or to the local frame.  

Orienting the object to the terrain makes the object appear to be resting on the ground.  
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Imagine a car driving up a hill.  The car tilts so that the front of the car is higher than the 

back of the car.  To get this behavior from objects, the autoSurfaceElevation Boolean 

must be set to true.  Figure 20 demonstrates this behavior.  Setting the variable to false 

causes the object to be oriented to the local frame only.  This is similar to a person 

walking up the same hill.  The person will still be standing straight up. 

Figure 20.   A GeoLocation3 node orienting an object to terrain 

 

The autoElevation and autoSurfaceOrientation variables can both be set to true or 

false individually to replicate specific behavior.  Setting both to true would work well for 

cars and vehicles that always stay on the ground and tilt with the terrain.  Setting both to 

false would simulate a helicopter that does not stay on the ground and does not tilt based 

on the terrain beneath it.  A building setting would have autoElevation set to true and 

autoSurfaceOrientation set to false.  This way, the building sits on the ground, but stands 
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directly up toward the sky.  The last combination is autoElevation set to false and 

autoSurfaceOrientation set to true.  This combination is strange, but someone may come 

up with a use for it. 

Earlier in this thesis, VRML’s lack of function calls was addressed as a limitation 

because an object can only interact with one GeoTerrainGrid at a time via a route 

statement.  If the object crosses to another GeoTerrainGrid, then the scene graph must be 

altered.  Figure 21 shows that objects using a GeoLocation3 node do not have this 

limitation because the Java class files handle a function calling mechanism within the 

Java code automatically.  All objects that use a GeoLocation3 node for placement will 

automatically recognize every GeoTerrainGrid currently loaded into the scene and call 

upon them for elevation and orientation data when needed. 

Figure 21.   A GeoLocation3 node spanning multiple GeoTerrainGrids 

 

E. SUMMARY 

This chapter described the three Java class files that demonstrate the technology 

developed in this thesis.  The GeoManager was looked at first because it allows multiple 
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pieces of terrain to register at a common location so that the GeoManager can help 

objects needing terrain data reach the correct GeoTerrainGrid.  Second was the 

GeoTerrainGrid.  This is the workhorse program.  The GeoTerrainGrid builds the 3D 

models of terrain, calculates elevation at arbitrary positions, and calculates rotation 

vectors for objects to orient them to the terrain.  Finally, GeoLocation3 was discussed.  

This file is basically the interface for objects to place themselves on GeoTerrainGrids.  

The VRML node allows the user to specify which functions of GeoTerrainGrids the 

object should use. 
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IV. EXPLORING FUTURE POSSIBILITIES 

A. INTRODUCTION 

The code in this thesis represents a starting point for a thorough terrain package 

for simulation or for terrain visualization and analysis.  Further research or future areas of 

work include several topics.  First, reducing the number of polygons used to render the 

terrain would improve the frame rate of the display and allow rendering larger areas of 

terrain.  Second, line of sight algorithms are looked at because they are critical to 

determining if objects placed on terrain can see each other.  This data is paramount to 

military simulation since units must be able to see each other to engage each other with 

direct fire.  The next section introduces several possible extensions to this thesis that add 

useful terrain-related functionality.  Then, the idea of terrain servers is introduced so that 

a robust server holding large amounts of data can provide many clients with the specific 

pieces of terrain they need.  This leads to the next topic, deformable terrain, where events 

in a simulation change aspects of the terrain.  These changes then propagate to the other 

clients.  Finally, adding terrain related features such as bodies of water, roads, vegetation, 

and buildings is discussed. 

B. REDUCING THE NUMBER OF POLYGONS DISPLAYED 

Rendering higher resolution terrain such as DTED level 2 terrain requires 

tremendous numbers of polygons.  For example, the sample DTED level 2 code examples 

in this thesis form grids that are 60 squares across and 60 squares deep.  Thus, there are 

3,600 squares each of which is broken into two triangles for a total of 7,200 polygons for 

an area that is roughly 1.8 km by 1.8 km.  The multiple grid example uses 16 of these 

terrain grids for 115,200 polygons for an area that is 4 minutes wide and 4 minutes deep 

in latitude and longitude.  This equates to an area that is a little over 7 km by 7 km.  This 

area is far too small for a military simulation larger than a battle between two companies.  

If a military theater of operations was 630 km by 630 km, then it would require 350 

terrain grids by 350 terrain grids using the same size terrain grids that are in this thesis.  

That means 122,500 terrain grids yielding 882 million polygons.  That is too many 

polygons for computers today.  A good example is the Radeon™ series video cards from 

ATI.  According to the ATI website at www.ati.com, the Radeon™ 9800 Pro can render 
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approximately 380 million triangles per second.  Thus, the card would need about 2.3 

seconds to render one frame.  The Radeon™ 9600 Pro is a much more affordable card 

and can only render 162.5 million polygons per second.  This card would need about 5.4 

seconds to render one frame.  Granted, these cards have culling algorithms that eliminate 

some of these polygons which would improve the rendering time.  However, if the scene 

is built with fewer polygons, then the video card will have less work and the frame rate 

will improve.  Likewise, pushing 882 million polygons to the video card takes a 

significant amount of I/O time even with the newest Advanced Graphics Port (AGP) 

buses.  Of course, fewer polygons generally results in a lower quality image.  The key is 

balancing image quality and frame rate performance. 

Level of detail is an area of continuing research in computer science.  As a result, 

there are several methods of polygon reduction available.  The methods fall into two 

broad categories: continuous level of detail (CLOD) algorithms and static level of detail 

algorithms.  CLOD algorithms currently show the most promise for large scale terrain 

because the algorithms use one height array and simply vary the number of polygons 

built from that height array.  Static level of detail algorithms require building multiple 

static models of the terrain before rendering and then swapping out the models when 

appropriate.  This swapping requires a lot of I/O from the computer which can cause 

pauses in the display and requires more storage space in memory or on disk.  Therefore, 

using static level of detail is typically reserved for rendering complex objects like a 

vehicle or person.  Terrain is simple enough that CLOD algorithms can work well. 

The basic concept of the CLOD algorithms is to render the same piece of terrain 

with fewer polygons while minimizing the impact on the final rendered image.  Terrain 

that is close to the viewpoint needs to use many smaller polygons to show the detail of 

the terrain.  However, distant terrain can use fewer large polygons without impacting the 

final image significantly.  The human eye cannot see as much detail in distant objects as 

it can in close ones.  Therefore, the larger, less detailed polygons used to render distant 

terrain look natural to the eye.  Figure 22 shows a small height array drawn at three 

different levels of detail in a CLOD fashion.  The highest resolution (Figure 22a) uses 32 

polygons while the lowest (Figure 22c) uses only 2 polygons.  If this height array was far 
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enough away from the viewpoint that it only covered a few pixels of screen space, then 

the two images would look the same even though Figure 22c uses much less detail. 

 

Figure 22.   Indexed face set drawn at 3 Resolutions 

 

The screen shot in Figure 23 shows how the GeoTerrainGrids could benefit from 

some form of polygon reduction by showing a group of GeoTerrainGrids in wire-frame 

mode.  Notice that the near terrain is clearly built from triangles while the distant terrain 

seems solid.  The distant terrain is actually made from triangles that are the same size as 

the near terrain.  However, since the triangles are far away, they project onto a smaller 

area of the screen and look solid. 
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Figure 23.   Wire-frame terrain showing how distant terrain polygons do not  
require polygons as large as near terrain 

 

GeoTerrainGrids are designed so that LOD can easily be added.  All of the code 

for rendering the terrain is contained in the GeoTerrainGrid Java file where it can be 

studied and modified.  A LOD algorithm can be added to explore the effects on image 

quality and frame rate.  In fact, several LOD algorithms can be added to the code and 

used interchangeably so that they can be compared using the same rendering engine and 

terrain data.  Another benefit of the GeoTerrainGrid approach is that each grid is an 

independent object that renders itself.  This means that every GeoTerrainGrid in the scene 

can choose its own level of detail for rendering.  Distant grids can use low resolution 

while close up grids can use high resolution.  As the viewpoint moves, individual 

GeoTerrainGrids can change their level of detail independently of the rest.  This means 

that the scene can adjust the LOD of individual sections of the scene as opposed to 

having to re-compute the whole scene when the viewpoint moves.  Programming a 
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solution for this will require that the GeoTerrainGrids receive the position of the 

viewpoint.  The GeoManager can be expanded to provide this information. 

Of course, a LOD algorithm is needed to determine how to build the indexed face 

set that represents the terrain.  A simple distance formula would be a good starting point.  

The distance from the viewpoint to the GeoTerrainGrid can determine how many 

polygons to build.  This solution can lead to rendering artifacts such as popping as 

GeoTerrainGrids change LOD and cracking as adjacent GeoTerrainGrids are rendered at 

different LOD.  A more sophisticated solution can calculate the distances that popping 

will occur at and increase the LOD before reaching that distance.  One popular algorithm 

that addresses this issue is the Real-time Optimally Adapting Meshes (ROAM) algorithm.  

Basically, this algorithm builds the scene as a triangle bintree.  The scene will start as one 

big right isosceles triangle that is repeatedly partitioned to increase the LOD.  The scene 

can also have triangles merged back together to reduce the LOD as required by the 

current scene.  The algorithm maintains two queues that hold the triangles which can be 

split and merged respectively.  The triangles in these queues are sorted by priority based 

on what effect the split or merge will have on the scene.  As the viewpoint moves, 

triangles have their priorities updated and are split or merged based on those priorities.  

When cracks are formed by a split or a merge, the neighbors of the triangle that was just 

split or merged are visited and likewise split or merged to eliminate the crack.  The 

original algorithm worked well with flight simulators where the viewpoint moved along a 

path causing the next frame to be similar to the current frame.  Therefore, the data in the 

queues listing the priority of the triangles for splitting and merging was still accurate and 

only needed some updating.  If the viewpoint were suddenly jumped to a new location in 

the scene, then the ROAM algorithm would have to re-evaluate all the triangles in both 

queues.  Details about an implementation of the ROAM algorithm are available at 

http://www.llnl.gov/graphics/ROAM/.  The ROAM algorithm has since been improved 

upon.  The Stateless One-pass Adaptive Refinement (SOAR) algorithm is a good 

example.  The SOAR algorithm uses the same bintree approach as ROAM, but uses 

optimized algorithms to quickly rebuild the entire scene using triangle strips for every 

frame.  The triangle strips reduce the amount of data passed to the graphics card through 

the I/O bus and provide the data in a fairly optimized data format (triangle strips).  SOAR 
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was developed at Lawrence Livermore National Laboratory with details available at 

http://www.gvu.gatech.edu/people/peter.lindstrom/software/soar/.  

C. LINE OF SIGHT (LOS) ALGORITHMS 

A line of sight calculation determines what can and cannot be seen from a given 

position due to terrain obstructing the view.  For example, if a person is standing at the 

bottom of a tall hill and facing the hill, then he cannot see what is on the other side of the 

hill because the ground is in the way.  If this same person moves to the top of the hill, 

then he will be able to see all sides of the hill at once.  Determining what a person or 

vehicle can see from their current position is paramount to military simulations and 

military planning.  Therefore, if the project explored in this thesis is to move forward as a 

possible military simulation and planning tool, then adding support for line of sight 

calculations is critical. 

1. Terrain Based LOS Calculations 

A line of sight calculation determines if terrain blocks the straight line view 

between an observer and a target.  For simplicity, the observer and the target are typically 

defined as points in the 3D.  This means that when checking for line of sight on an object 

such as a tank, the tank would be considered to be a point rather than a vehicle that 

occupies a 3D area.  This is a simplification, but if the point is placed at the center top of 

the tank, then it does reasonably well.  A more accurate method could determine a box 

around the tank and look for visibility with any corner, but that requires 8 line of sight 

calculations and would not add much realism.  To be completely accurate, line of sight 

calculations would have to cover the entire area the tank occupies.  Such a calculation 

would require Calculus and be computationally intensive.  The single point calculation is 

probably the best compromise of performance and realism. 

The line of sight between the observer and the target must then be checked against 

the terrain.  The simplest case happens when both the observer and the target are on the 

same polygon of terrain.  Here, they always have line of sight on each other.  However, if 

they are on different polygons, then multiple checks must be made.  First, determine the 

slope of the target observer line.  Then, determine the slope of the line from the observer 

to several points of terrain on the observer target line.  If the slope from the observer to 

any terrain point on the observer target line is greater than the slope of the entire target 
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observer line, then there is no line of sight.  Basically, if there is high ground between the 

observer and the target that blocks the view, then the slope of the line to that high ground 

will be steeper than the slope of the line to the target (Figure 24). 

Figure 24.   Graphical depiction of determining terrain based line of sight 

 

The next question is how many and what points of terrain to check.  A complete 

solution will check the terrain at the intersection point with every side of every polygon 

crossed as in Figure 25a.  This would require either two or three calculations for every 

grid square spanned, one when entering the grid square, one when leaving, and possibly 

one if the line intersects the line that divides the grid square into two triangle polygons.  

Of course, exiting one grid and entering the next is the same calculation.  Therefore, the 

actual total number of calculations when spanning n grid squares is between n+1 and 

(2*n) + 1.  When objects are many grid squares apart, these calculations will grow 

quickly.  The MODSAF military simulation checks line of sight using this method.  

Another approach is to always use the same number of calculations and just distribute 

them evenly across the distance between the observer and target (Figure 25b).  This 

technique could determine that a line of sight exists when it actually does not, but it does 

keep the number of calculations to a much more manageable number.  The Janus military 

simulation uses this technique.  Yet one more technique is to keep the average elevation 

for every grid square and use that elevation for line of sight calculations.  This would 

mean only one calculation for every grid square spanned.  Thus, this is a compromise 

between the first two methods.  Of course, more systems could be devised. 
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Figure 25.   Determining the number of line of sight calculations 

 

2. Horizon Based Line of Sight Calculations 

This thesis has been talking about potentially large areas of terrain in true 3D.  

Thus, the curvature of the earth is a consideration in line of sight calculations.  Take, for 

instance, a line of sight calculation between two ships on the surface of the ocean.  Since 

sea level will have an elevation of zero, these ships would always be able to see each 

other by the terrain oriented line of sight calculations just described.  However, the ships 

could be far enough apart that the horizon blocks the line of sight.  The formula for the 

location of the horizon is not too difficult, the Pythagorean Theorem is used (Figure 26).  

Imagine a line from the observer to the horizon and call it rh for the range to the horizon.  

This is the first leg of a right triangle.  Next, imagine a line going from this point of the 

horizon to the center of the earth, call it Re for radius of the earth.  This radius is 

perpendicular to the line rh.  Build a right triangle with these two lines as its legs.  The 

length of the hypotenuse of this triangle is equal to the radius of the earth plus the height 

of the observer above sea level.  The equation looks like this: 

 Re
2 + rh

2 = (Re + ho)2 

Where ho is the height of the observer above sea level.  Solving for rh gives: 

  rh
2 = Re

2 + 2Reho + ho
2 – Re

2 

  rh = Sqrt(2Reho + ho
2) 

 The radius of the earth (6,374,000 m) is great enough that the ho
2 term can be 

insignificant and ignored at low elevations.  Any terrain farther away than rh is beyond 

the horizon and will not be visible if it is at the surface of the ocean.  However, if another 

object is higher than sea level, then it can still be visible.  This range can be calculated.  
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In fact, if the range from this object to its horizon is calculated in the same fashion as just 

done above, then the range that the two objects will be able to see each other over the 

horizon is the sum of their individual rh values. 

Figure 26.   Calculating distance to the horizon 

  

Of course, ground forces will rarely need to worry about forces beyond the 

horizon.  Ground forces will require the terrain oriented line of sight calculations.  

However, the over the horizon calculations are useful for ships at sea.  Likewise, the over 

the horizon calculation could be used to locate terrain grids that do not have to be 

rendered at all. 

The code for terrain based LOS calculations will be split into two areas.  

GeoTerrainGrids will determine terrain based LOS within their individual boundaries.  

Determining which GeoTerrainGrids to use and the points where the LOS enters and/or 

exits individual GeoTerrainGrids will be done by the GeoManager.  Thus, the user will 

call a method in the GeoManager to determine LOS.  The GeoManager will in turn call 

methods in as many GeoTerrainGrids as necessary. 

D. MISCELLANEOUS TERRAIN FUNCTIONS 

The last section described LOS functions that could be added to the code in this 

thesis.  Scene graph nodes would access these functions by interacting with the 

GeoManager class.  This same pattern can be used to add even more functions to the 

code.  Three examples are determining the slope of the terrain at a given location, 

determining the distance between two geographic positions, and determining the straight 

line path between two positions.  Each of these is briefly discussed here. 
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The slope of the terrain at a given position can affect the speed of a vehicle 

moving on that terrain.  Many vehicles have difficulty climbing steep slopes and slow 

down when doing so.  Likewise, many vehicles travel faster when moving downhill.  

Finally, some slopes are too steep for vehicles to climb at all.  Determining the slope is 

not too difficult given the position and the direction of travel of the object.  Two 

elevation values are needed.  The first must be from the location of the object while the 

second must be from small distance away in the direction of travel.  Determining these 

elevations was covered in section 3.C.2 of this thesis.  The difference between the two 

elevation values is called the rise of the terrain while the distance between the two 

locations is called the run.  The percentage of the slope is the rise divided by the run 

multiplied by 100.  Figure 27 shows an example calculation using a rise in terrain of 1.5 

meters and a run of 4 meters. 

Figure 27.   Calculating percent slope 

 

Determining the distance between two geographic positions can be a difficult 

problem in UTM and latitude and longitude but is much more manageable in geocentric 

coordinates.  Latitude and longitude coordinates do not easily convert to distances 

because the distance between lines of longitude varies with latitude.  UTM coordinates 

are based on evenly spaced reference lines, but there are still problems at certain 

locations of the earth.  Figure 28 shows a section of the UTM system that demonstrates 

the problem.  The figure is broken down into grid squares that have 2-letter designators.  

Each grid square is 1 km by 1 km by definition.  However, the UTM system divides the 

world into slices that are 6 degrees of longitude wide.  Since the lines of longitude 

converge at the poles, these 6 degree slices become narrower as they approach the poles.  

To account for this convergence, grid squares at the boundaries shrink and eventually 
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disappear while traveling toward the poles.  This is visible in the two columns that start 

with the letters Y and B.  At the bottom of Figure 28 these two columns are wider than 

they are at the top of the figure.  If the diagram showed a large enough area, then the two 

columns would eventually disappear as the poles were approached.  These boundaries 

make distance calculations difficult. 

Figure 28.   UTM system showing converging grid squares [FM 3-25-26 Figure 4-11] 

 

Any distance calculation that does not cross one of these 6 degree boundaries is 

straightforward.  The geographic coordinates of the two locations translate directly into 

the north-south distance between the points and the east-west distance between the 

points.  However, if a 6 degree boundary is crossed, then calculating the distance from 

the edge of the boundary terrain grid to the boundary itself is difficult.  Latitude and 

longitude coordinates could be helpful here.  If the intersection of the 6 degree slice can 

be computed in latitude and longitude coordinates, then that coordinate can be converted 
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into a UTM coordinate that may allow the user to determine the distance spanned by that 

truncated grid square. 

The problem is probably best approached using geocentric coordinates.  

Converting both coordinate locations to GCC gives two sets of X, Y, and Z values that 

represent a vector from the center of the earth to the coordinate point on the surface.  The 

angle between the two vectors represented by the GCC locations of the two coordinates is 

needed.  The following formula determines this angle. 

a · b = |a| |b| cos ? 

? = acos ((|a| |b|) / (a · b)) 

Where a and b are the vectors determined by the GCC values of the two 

coordinates and · represents the dot product.  Of course, this only works when a · b does 

not equal zero which only happens when a and b are orthogonal.  In this case, ? is equal 

to .5p.  The distance between the coordinates is then an arc-length problem and the arc-

length is simply the radius of the earth multiplied by ?. 

The straight-line-path between two locations is a path that, when followed, moves 

across the terrain while always remaining at the exact elevation of the terrain.  A simple 

straight line between two points will often rise above the terrain or dip below the terrain 

depending on the specific contours of the terrain between the two points.  Building a path 

that explicitly follows the terrain requires knowing exactly how the terrain was built.  

With the original GeoElevationGrid determining an explicit path was not possible 

because the rendering was not explicit (see section 3.C.1 of this thesis).  However, with 

the GeoTerrainGrid, an explicit path can be determined.  Implementing an algorithm to 

determine this path requires determining all the points of intersection with the straight-

line path and the triangles in the indexed face set.  Figure 29 shows all of these 

intersections on an example path.  The algorithm could store the path in an indexed point 

set with the points listed in order from the start point to the end point. 
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Figure 29.   Determining the path over terrain 

 

E. TERRAIN SERVERS 

In the second chapter of this thesis, the large amount of data represented by 

DTED was briefly discussed.  Basically, the amount of data is tremendous when higher 

levels of DTED are used.  Therefore, placing the data on every computer that is running 

as part of a military simulation or training aid is not feasible.  However, having a server 

with robust amounts of storage space that supplies terrain data to clients when needed is 

feasible.  Military simulations are typically run in simulation laboratories with soldiers 

manning individual workstations that drive simulated forces in the computer.  The 

opposition forces are driven either by more soldiers specifically selected for that task or 

by civilians.  All of the computers participating in the simulation are placed in the same 

laboratory and are connected to a LAN or WAN.  Thus, the simulation is a distributed 

computer exercise where each computer controls specific icons and listens to the network 

to keep track of what the other icons on other computers are doing. 

The individual computers that soldiers and civilians drive icons from do not have 

hard drives large enough to store hundreds of gigabytes of terrain data needed to render 

the entire world at DTED level 2 or higher.  One solution to this problem would be to 

upgrade all of the computers, but that would be far too expensive.  A more cost effective 

solution would be to build networked terrain into the simulations.  This way, each 

computer would only have to store the terrain that the icons it controls are currently 

occupying.  When the icons move to a new area, the software can swap out the old terrain 

data and replace it with data of their new location.  However, this requires a server to 

handle terrain and networking. 
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One of the primary concerns with using networked terrain will be bandwidth.  

Large terrain files require lots of bandwidth to transfer from computer to computer.  So, 

minimizing the amount of data sent is critical.  Some possible solutions are multicasting 

terrain data so that multiple computers will receive data with every transmission and 

sending terrain data in as compact a format as possible.  The multicasting solution 

requires that multiple computers in the simulation require the same pieces of terrain.  

This may sound unlikely, but would actually be fairly common.  Picture a combat brigade 

moving toward an objective.  There are several types of vehicles being controlled by 

possibly dozens of individual work stations and all moving toward the same objective.  

There will be a significant amount of overlap in the terrain needs of those computers.  

However, a multicasting protocol would be needed that recognizes repeated requests for 

the same terrain and does not automatically respond to each one. 

There is another significant issue with the terrain server concept, though.  That 

issue is providing terrain to several different simulation programs that are all participating 

in the same distributed simulation (often referred to as a Federation in current military 

simulations).  Each branch of the military has its own simulation programs that have 

differences.  In order to participate in large simulations spanning all the branches, these 

different programs conform to standards for describing what their icons are doing within 

the simulation.  The current standard is called the High Level Architecture or HLA.  

Details about HLA are at https://www.dmso.mil/public/transition/hla/.  The actual 

specification is the IEEE 1516 specification and is available for purchase at 

http://shop.ieee.org/store/product.asp?prodno=SS94883.  A standard similar to HLA will 

be needed for networked terrain.  One possibility is to send DTED files over the network.  

However, DTED files are in a binary format that can be difficult to read and can be 

inflexible in the amounts of data transferred.  Another solution is using XML to transfer 

data.  XML was described in Chapter II of this thesis and provides a more elegant 

solution where the user could use XML tools to draw the data out of the files without 

having to meticulously parse a binary file format.  Likewise, using XML allows 

validating terrain data files to ensure that every program on the system is producing 

proper terrain files.  The XML version of a DTED file would be significantly larger than 

the original file, increasing the bandwidth needed.  However, XML files are text based 
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and work well with common compression algorithms.  Using such algorithms can bring 

the size of the files back down to save some of this bandwidth.  Ekrem Serin of the Naval 

Postgraduate School did a thesis that addresses serializing binary objects created from 

XML [Serin, 2003].  His thesis is located at theses.nps.navy.mil/03Mar_Serin.pdf and 

presents ideas that can be used to create a robust networked terrain solution that uses 

open standards. 

F. DEFORMABLE TERRAIN 

Having deformable terrain means that actions within a simulation can change the 

shape of the terrain with persistent effects.  For terrain discussed so far in this thesis, this 

would result in changing the height values of the underlying DTED data.  These changes 

would then be propagated to all other clients when the particular area of terrain is used.  

How the terrain is modified could vary from digging a tank ditch, to filling in a culvert, to 

blowing large holes in the earth with bunker busting thousand pound bombs.  The code to 

determine how these occurrences affect terrain is not a subject for this thesis.  What is 

relevant here are techniques to propagate those changes throughout a distributed military 

simulation. 

One possible technique is to store complete terrain files on every computer in the 

simulation.  When one computer determines that a terrain altering event has occurred, the 

change in terrain is calculated and sent out to every computer in the distributed system.  

Sending the entire terrain file every time a small change occurs would be terribly 

inefficient.  Therefore, a protocol for sending small changes would be used.  If this 

protocol was a reliable protocol, then the terrain change would only be sent as many 

times as necessary for all the systems in the simulation to acknowledge receipt.  Each 

system would then store the change on local storage in case the system required rebooting 

at some time.  The problem with this solution is that if a system goes off-line, then that 

system will not acknowledge receipt of the terrain change and will cause repeated re-

transmissions until the system comes back on-line and acknowledges receipt.  An 

unreliable multicasting protocol could be used instead.  However, with this situation, the 

change in terrain would have to be retransmitted at regular intervals for the duration of 

the simulation because there is no mechanism to verify that everyone has received and 

understood the message.  This periodic retransmission is called a heartbeat and insures 
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that eventually, every computer listening to the system will get the message.  This 

technique will not scale well at all, though.  Deformed pieces of terrain would use up 

bandwidth retransmitting the deformation until the exercise ended.  This technique will 

not work in large simulations. 

A second approach involves the terrain server.  This system needs a separate 

networking solution for passing terrain to clients because some form of reliability is 

required.  In other words, the terrain server cannot use the heartbeat method for passing 

terrain data.  There is too much data for that and it rarely changes.  Deformable terrain 

would require reliable networking in both directions.  This does not mean that TCP/IP 

must be used like it is with most reliable networking solutions.  In fact, TCP/IP is not a 

multicasting protocol.  Therefore, some other reliable protocol that supports multicasting 

would be desirable.  Unfortunately, there are no common or proven networking protocols 

that support reliable multicasting.  One possible future solution is the Selectively Reliable 

Multicast Protocol (SRMP) being developed at George Mason University by Mark Pullen 

[Shanmugan, 2002].  Details about the system are at netlab.gmu.edu/SRMP/contact.php.  

However, some investigating and testing will be required.  Terrain altering events would 

be sent to the terrain server(s).  From there, clients could be notified that a change has 

occurred in a specific area.  If a system joins late or has to restart, then it will 

automatically contact the server for its terrain data and will receive the new deformed 

terrain.  The toughest question is how to inform all of the clients of the change.  Some 

clients will need to update their terrain data while others will not be interested in that 

terrain at that time.  So, the question is whether the server somehow keeps track of which 

clients are currently using the terrain that was just deformed or whether the server bothers 

every client including those that do not have that terrain loaded at the time.  Personally, 

the author thinks sending an update notification to every client is the better solution 

because terrain changes are rare enough that forcing the server to keep track of what 

terrain each client currently has loaded is not justified.  In fact, it is possible that the two 

way communication that keeping track of every client’s terrain use would require could 

be more burdensome on both the server and the client than just demanding a negative or 

positive response to a terrain change from every client. 
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G. GEOGRAPHIC FEATURES SUCH AS BODIES OF WATER, ROADS, 
VEGETATION, AND BUILDINGS 

One last topic of discussion is how to include terrain features that are not present 

in a height field.  For instance, roads are not present in DTED.  However, roads are very 

significant in military simulations.  The question is how can a road be represented within 

the simulation so that it can be utilized as a road by objects in the simulation, rendered as 

a road, and possibly deformed by events?  The problem is that an item such as a road is 

neither an object like the icons that represent vehicles and personnel, nor is it ordinary 

terrain.  For instance, roads cannot be rendered with the terrain engine in this thesis 

because they do not conform to evenly spaced postings in a height field.  Additional code 

specifically aimed at rendering a road would have to be written.  Li kewise, the path of the 

road along with the dimensions and type would have to be available to determine how to 

render the road.  After all, a gravel road looks significantly different than an interstate 

highway. 

Geographic features such as roads, bodies of water, and buildings will have to be 

stored as objects.  In fact, each type of geographic feature will require its own type of 

object, possibly multiple types of objects.  Take for instance, the road example again.  A 

road object would be able to store information about the route the road follows, the width 

of the road, what type of texture map to use when rendering the road, how the road 

affects trafficability, and more.  Likewise, the road object will have code to draw the road 

in the rendering engine.  Complicated simulations could even have code that degraded the 

road every time a vehicle passed over it.  Naturally, the road will have to interact with the 

terrain objects for the display to work properly.  The road will need to access height field 

data in order for the road to sit properly on the surface of the terrain at all locations.  

Simply retrieving the proper terrain elevation at a point will not work because the road 

will span many polygons of terrain.  Instead, the road will have to know how the terrain 

polygons are being built so that it can match those polygons.  If the road simply takes 

some spot elevation, then there will be places where the road floats above the terrain a 

little and places where it is buried a little. 

The next question is how to control and distribute these objects throughout the 

system.  Normally, objects are controlled by clients who routinely update the system with 
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the status of the objects using heartbeat packets.  However, if every road, building, body 

of water, and tree suddenly needed to give off heartbeat packets, then the network would 

become saturated.  The terrain related objects could have their heartbeat packets sent 

much less frequently and at spaced intervals, but they would still be consuming 

bandwidth and client processor cycles for handling the packets.  Another solution is to 

treat the objects just like terrain.  The terrain server sends the objects along with the 

terrain.  This would likewise help the clients to associate the terrain objects with the 

appropriate terrain grids so that when a terrain grid is rendered at a lower resolution 

because it is far away from the viewpoint, the terrain objects can match that lower 

resolution.  The terrain objects could even be given direct access to the height field and 

indexed face sets to assist in the rendering process. 

Another benefit of treating the geographic features similarly to terrain is that the 

terrain server owns the objects.  Everything in the simulation is owned by some computer 

in the simulation.  If that computer goes offline, then those objects disappear from the 

simulation until that computer comes back on-line.  If the geographic objects gave off 

heartbeats, then they would disappear from the system anytime their computer goes off-

line long enough.  The terrain itself, though, would not disappear even if the terrain 

server went off-line.  This is because the terrain is persistent until the client is told there is 

a change.  Of course, none of the clients will be able to retrieve any additional pieces of 

terrain nor will they be able to report any terrain deformations while the server is off-line, 

but the simulation would be able to continue. 

Here are some final thoughts on many of these types of objects.  The objects will 

need the necessary code to render themselves.  This code would ideally allow the objects 

to render at multiple levels of detail that mirrors the level of detail that the terrain around 

them is rendering itself at.  The objects will also need code to handle how simulation 

objects interact with them.  For instance, vehicles will typically move faster on roads and 

will sink in water.  This will require the ability to communicate with the simulation 

objects.  Each object will also need code to determine how it is deformed by various 

actions.  A tank round will not know how to deform a road versus a building versus a 

body of water.  Instead, the geographic objects will have to contain this information.  

Granted, the objects will have broad categories such as explosive projectile or kinetic 
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energy round, but the code for calculating damage will have to be in the geographic 

objects.  The munitions object will only contain data describing the weapon.  These 

geographic objects will also need to be robust enough to understand how deformations 

affect how the object renders itself and how it interacts with simulation objects.  Some of 

the simpler geographic objects will be roads and bodies of water.  After all, they could 

simply be viewed as improvements to mobility and restrictions to mobility.  Vegetation is 

tougher because it also affects visibility.  Line of sight algorithms would have to take 

vegetation into consideration.  Thicker vegetation would limit the line of sight and lower 

the probability of detecting simulation objects within it.  Buildings would be very 

difficult.  Here, simulation objects could enter the building and interact with it.  Objects 

within the building would not be visible from the outside unless they are near a window, 

door, or hole.  Buildings can be damaged so that the appearance changes significantly.  

The change may be a scorch mark, a small hole, or maybe even a collapsed wall.  The 

line of sight algorithms for terrain will not work because the buildings have walls that 

have windows and doors.  Even if damaging buildings is not allowed, simply determining 

an efficient way to define the structure and appearance of a building is complicated. 

Lastly, one of the most difficult problems will be getting the majority of the 

simulation programs being used to agree upon how to impleme nt these geographic 

objects.  The various simulation programs will already be handling terrain in a similar 

manner, but these objects will be very different.  Air Force and Navy simulations will 

probably treat objects such as roads simply as visual objects for display.  However, Army 

and Marine simulations will treat roads as both visual objects for display and terrain 

objects that impact mobility.  Air Force simulations will have situations where planes are 

at high altitude and capable of viewing hundreds or even thousands of buildings at one 

time.  If each of these buildings is a large and complicated object, then the Air Force 

simulation will not be able to load the scene efficiently without sophisticated culling and 

level of detail algorithms.  However, the Army and Marines will need the buildings to be 

robust objects that the icons of soldiers can enter and interact with.  Meeting both of these 

needs simultaneously so that the Air Force, Army, and Marines can run a joint simulation 

will be a difficult task. 

H. SUMMARY 
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This chapter focused on five possible extensions to the technology developed in 

this thesis.  The first topic, polygon reduction, would improve the frame rate of terrain 

displays and increase the maximum amount of terrain that could be viewed at one time.  

The second topic was line of sight algorithms.  Two algorithms were discussed, one for 

local terrain and a second for over-the-horizon calculations.  These algorithms are used 

extensively by military simulations.  The next topic was terrain servers.  Most computers 

today do not have the space to store terrain data for the entire planet.  Therefore, a 

networking solution where robust servers hold all the terrain for the world and give 

smaller client computers the specific pieces of terrain that they need would allow smaller 

computers to have full access to data on the entire planet.  The fourth topic, deformable 

terrain, would allow simulations to explore events that change the surface of the earth.  

Finally, some of the issues that will be encountered when trying to incorporate terrain 

related objects into the scene are addressed.  These items include things like roads and 

vegetation that are not actually terrain, but that stay geographically fixed. 
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APPENDIX A.  ACRONYMNS AND ABBREVIATIONS 

AGP  Advanced Graphics Port 

CLOD  Continuous Level Of Detail 

DTED  Digital Terrain Elevation Data 

GCC  Geocentric Coordinate 

GDC  Geodetic Coordinate 

GeoVRML Geographic Virtual Reality Modeling Language 

LAN  Local Area Network 

LOD  Level Of Detail 

LOS  Line Of Sight 

ROAM Real-Time Optimally Adapting Mesh 

SAVAGE Scenario Authoring and Visualization for Advanced Graphical 

  Environments 

SOAR  Stateless One-pass Adaptive Refinement 

SRMP  Selectively Reliable Multicast Protocol 

UTM  Universal Transverse Mercator 

VRML  Virtual Reality Modeling Language 

WAN  Wide Area Network 

XML  Extensible Markup Language 

XSLT  Extensible Stylesheet Language for Transformations 

X3D  Extensible 3D Graphics 
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APPENDIX B.  CODE EXAMPLES 

The code for this thesis started out as several files, but was condensed into only 

three.  All the code is written in Java so that it can work with VRML as part of a script 

node.  The first Java class is the GeoManager.  This is the most unique class of the three 

because it does not extend the Script class.  This means that it is not associated with a 

X3D or VRML node.  The GeoManager is a helper class that allows the GeoLocation3 

class and the GeoTerrainGrid class to work together and extend the power of X3D and 

GeoVRML 

A. GEOMANAGER 

The key to this class is the private constructor and the static method to retrieve a 

copy of a GeoManager.  Together, these aspects ensure that only one GeoManager exists 

at any time and that all GeoTerrainGrids and GeoLocation3s can work together by 

communicating through this single GeoManager.  The code is commented extensively to 

assist the reader in understanding the code. 

 

import java.util.*; 
import geotransform.coords.Gdc_Coord_3d; 
 
public class GeoManager 
{ 
  // One static manager is defined - this is the only 
manager that anyone 
  //  will be allowed to use (GeoTerrainGrids and 
GeoEntities) 
  private static GeoManager manager = null; 
 
  // This Vector holds all the terrain grids that register.  
Remember that when 
  //  coding in Java, only Java 1.1 methods can be used.  
This significantly 
  //  limits the methods available for Vectors. 
  protected Vector grids; 
 
  // This vector holds all the entities that register. 
  protected Vector entities; 
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  // This hashtable holds every URL received and 
automatically does not 
  //  record duplicate entries 
  protected Hashtable urlKeeper; 
 
  // Turn this to false to shut off debugging statements to 
the console 
  private boolean debug = true; 
 
  // The only way to access the GeoTerrainManager is to 
call this static method 
  public static synchronized GeoManager getGeoManager() 
  { 
    // Check to see if a manager has already been created 
    if(manager == null) 
    { 
      // None has, so create one 
      manager = new GeoManager(); 
    } 
    // Return the static manager - it may have just been 
created 
    return manager; 
  } 
 
  /** 
  *  Constructor; should not be called by external people. 
To get 
  * an instance of this class, call getTerrainManager 
  */ 
  private GeoManager() 
  { 
    debugOut("Inside constructor for GeoManager.  Manager = 
" + this); 
    grids = new Vector(); 
    entities = new Vector(); 
    urlKeeper = new Hashtable(); 
  } 
 
  /** 
   * Add a new grid to the list 
   */ 
  public void addGrid(GeoTerrainGrid newGrid) 
  { 
    grids.addElement(newGrid); 
    debugOut("Adding new GeoTerrainGrid.  Total number of 
grids: " + grids.size()); 
  } 
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  public GeoTerrainGrid getGrid(Gdc_Coord_3d coordinate) 
  { 
    GeoTerrainGrid tempTerrainGrid = null; 
    boolean found = false; 
 
    for(int x = 0; x < grids.size(); x++) 
    { 
      tempTerrainGrid = (GeoTerrainGrid)grids.elementAt(x); 
      if(tempTerrainGrid.checkBounds(coordinate)) 
      { 
        found = true; 
        break; 
      } 
    } 
    if(found) 
    { 
      return tempTerrainGrid; 
    } 
    else 
    { 
      debugOut("Did not find a grid"); 
      return null; 
    } 
  } 
 
  private void debugOut(String message) 
  { 
    if(debug) 
      System.out.println(message); 
  } 
} 
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B. GEOTERRAINGRID NODE 

The GeoTerrainGrid is the workhorse of this thesis.  This code creates the indexed 

face set that renders the terrain, calculates the elevation at arbitrary positions, and 

determining the rotation vector and angle needed to orient an object to the terrain under 

it.  There is license agreement attached to this code because it is an extension to the 

GeoElevtionGrid from SRI.  Therefore, the license agreement from SRI is included.  All 

changes to the original GeoElevationGrid have been clearly marked. 

// 
// Filename: GeoTerrainGrid.java (formerly 
GeoElevationGrid.java) 
// 
// Author: 
//   Martin Reddy, SRI International. 
//   Heiko Grussbach, Centre Recherche Henri Tudor 
//   Yong-Tze Chi, SRI International 
//   CPT Brian Hittner, US Army, Naval Postgraduate School 
student 
// 
// Purpose: 
//   This class implements a new ElevationGrid node for 
VRML. It enables the 
//   specification of coordinates in coordinate systems 
other than the 
//   basic VRML Cartesian XYZ system. We support a number 
of geographic 
//   coordinate systems such as lat/long and UTM. 
// 
//   This code requires access to the GeoTransform Java 
package, included 
//   as part of the GeoVRML source code distribution. 
// 
// License: 
//   The contents of this file are subject to GeoVRML 
Public License 
//   Version 1.0 (the "License"); you may not use this file 
except in 
//   compliance with the License. You may obtain a copy of 
the License at 
//   http://www.geovrml.org/1.0/license/. 
// 
//   Software distributed under the License is distributed 
on an "AS 
//   IS" basis, WITHOUT WARRANTY OF ANY KIND, either 
express or 
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//   implied. See the License for the specific language 
governing 
//   rights and limitations under the License. 
// 
//   Portions are Copyright (c) SRI International, 2000. 
// 
// Revision: 
//   Martin Reddy: initial version 
//   Heiko Grussbach (28 Feb 2000): optimized conversion to 
GCC 
//   Yong-Tze Chi (20 Jul 2000): get round get1Value() 
error in Cosmo 
//   Brian Hittner (26 Sep 2003): Major revision 
//      - Added ability to register grid with a GeoManager 
//      - Added ability to retrieve correct elevation to 
place an object on 
//         the ground at a given location 
//      - Added ability to retieve correct rotation to 
place an object on 
//         the ground at a given location 
//      - Replaced maintaining the indexed face set, 
coordinate list, and height 
//         field at class level with retrieving same values 
from the VRML Node 
//         when needed to reduce the memory footprint 
// 
//   $Id: GeoElevationGrid.java,v 1.2 2002/03/08 00:30:25 
reddy Exp $ 
// 
 
import java.lang.*; 
import vrml.*; 
import vrml.field.*; 
import vrml.node.*; 
import geotransform.coords.*; 
import org.web3d.geovrml.GeoVRML; 
 
// ************* Start CPT Brian Hittner Addition Sep 2003 
************** 
import geotransform.transforms.*; 
import java.util.*; 
// ************* End CPT Brian Hittner Addition Sep 2003 
************** 
 
public class GeoTerrainGrid extends Script { 
 
  GeoVRML geovrml = null; 
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  double  yScale; 
  double  xInc, zInc; 
  int     xDimension, zDimension; 
  boolean debug = false; 
 
  // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
  /** The following variables are no longer kept at the 
class level.  Instead, the 
   * values are retrieved at run-time from the underlying 
VRML object to reduce 
   * the memory footprint of this class. 
   */ 
//  Node    ifs, coord; 
//  MFFloat height = null; 
  // A validHeightField boolean is used so that the code 
does not try to calculate 
  //  anything if the height field was initially invalid or 
later set to something 
  //  invalid.  It is set to true only once a valid height 
field is processed. 
  boolean validHeightField = false; 
  Gcc_Coord_3d gccGeoOrigin; // This is needed to convert 
coordinates that are 
                             //  in screen coordinates back 
to GCC space 
  // The TerrainManager keeps track of terrain grids by 
their boundaries.  The 
  //  boundaries are stored as the south west corner and 
the north east corner. 
  Gdc_Coord_3d gdcSouthWest, gdcNorthEast; 
  Utm_Coord_3d utmSouthWest, utmNorthEast; 
  // The GeoManager allows GeoLocation3 to locate the 
proper terrain grid 
  GeoManager manager; 
  // ************* End CPT Brian Hittner Addition Sep 2003 
************** 
 
  String  geo_system; 
  String  geoGridOrigin; 
 
  // regenerate() will build the vertex lists based upon 
the current 
  // GeoElevationGrid state, e.g. yScale, height array, 
etc. 
  // Note: parameter height was added by CPT Brian Hittner, 
Sep 2003 
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  private void regenerate(MFFloat height) { 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    // These VRML Nodes are needed to build the 
IndexedFaceSet that is the 
    //  rendered terrain (These used to be class variables) 
    Node ifs; 
    Node coord; 
 
    // Retrieve the Nodes that define the IndexedFaceSet 
    coord = (Node)((SFNode)getField("coord")).getValue(); 
    ifs   = (Node)((SFNode)getField("ifs")).getValue(); 
    // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
 
    // get the texCoord coordinate list. If vrml_texpoint 
is non-null 
    // after this, then we need to generate texture 
coordinates 
 
    float h[]; 
 
    float vrml_texpoint[] = null; 
    Node texCoordNode = null; 
    MFVec2f tex_point = null; 
 
    SFNode texCoord = (SFNode) ifs.getExposedField( 
"texCoord" ); 
    if ( texCoord != null ) { 
      texCoordNode = (Node) texCoord.getValue(); 
      if ( texCoordNode != null ) { 
 tex_point = (MFVec2f) texCoordNode.getExposedField( 
"point" ); 
 if ( tex_point.getSize() == 0 ) 
   vrml_texpoint = new float[ xDimension * zDimension * 
2 ]; 
      } 
    } 
 
    // let's allocate an array to hold all of the (x,y,z) 
coords 
 
    float vrml_point[] = new float[ xDimension * zDimension 
* 3 ]; 
 
    // loop through all height field values 
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    int h_index = 0, p_index = 0, t_index = 0; 
 
    //Insertion starts Heiko Grussbach 
    double[] geoGridOriginArray=new double[3]; 
    double[] new_coord=new double[3]; 
 
    geoGridOriginArray=geovrml.getValues(geoGridOrigin,3); 
    float xDiv=1.0f/( xDimension - 1.0f ); 
    float zDiv=1.0f/( zDimension - 1.0f ); 
    //Insertion ends Heiko Grussbach 
 
    h = new float[zDimension * xDimension]; 
    height.getValue(h); 
 
    for ( int z = 0; z < zDimension; z++ ) { 
      for ( int x = 0; x < xDimension; x++ ) { 
 
 // get this elevation value (implement vertical 
exaggeration here) 
 
 // double elev = (double) height.get1Value( h_index++ 
) * yScale; 
        double elev = (double) h[h_index++] * yScale; 
 
 // work out the string describing this new geographic 
location 
 
 //Change starts Heiko Grussbach 
 geovrml.addCoord( new_coord, geoGridOriginArray, 
xInc*x, zInc*z, 
     elev, geo_system ); 
 //Change ends Heiko Grussbach 
 
 if ( new_coord == null ) return; 
 
 // convert this into GCC 
 
 Gcc_Coord_3d gcc = geovrml.getCoord( new_coord, 
geo_system ); 
 
 // and then add it to our list of floats 
 
 vrml_point[p_index++] = (float) ( gcc.x ); // / 
1000000.0 ); 
 vrml_point[p_index++] = (float) ( gcc.y ); // / 
1000000.0 ); 
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 vrml_point[p_index++] = (float) ( gcc.z ); // / 
1000000.0 ); 
 
 // and update our texture coordinate list too 
 
 if ( vrml_texpoint != null ) { 
   //Change starts, Heiko Grussbach 
   vrml_texpoint[t_index++] = (float) x *xDiv; 
   vrml_texpoint[t_index++] = (float) z *zDiv; 
   //Change ends, Heiko Grussbach 
 } 
 
 if ( debug ) 
   System.out.println( h_index + ": " + 
         vrml_point[p_index-3] + ", " + 
         vrml_point[p_index-2] + ", " + 
         vrml_point[p_index-1] + " : " + 
new_coord ); 
      } 
    } 
 
    h = null; 
 
    // Now let's make the coords field of our Coordinate 
node 
    // equal to the list of coordinates that we have just 
built 
 
    MFVec3f coord_point = (MFVec3f) coord.getExposedField( 
"point" ); 
    coord_point.setValue( p_index, vrml_point ); 
 
    // set the texCoord field if we are generating texture 
coords 
 
    if ( vrml_texpoint != null && tex_point != null ) { 
      tex_point.setValue( t_index, vrml_texpoint ); 
    } 
 
    // let's make the coordIndex entries. These are a bit 
easier! 
 
    int values[] = new int[ ( xDimension -1 ) * ( 
zDimension - 1 ) * 8 ]; 
 
    int index = 0; 
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    for ( int z = 0; z < zDimension - 1; z++ ) { 
      for ( int x = 0; x < xDimension - 1; x++ ) { 
        // ************* Start CPT Brian Hittner Addition 
Sep 2003 ************** 
        // This code was modified to build 2 triangles per 
grid square instead 
        //  of one complete square that the rendering 
engine would then have 
        //  to split into triangles at run-time 
 values[index]   = x + z * xDimension; 
 values[index+1] = (x + 1) + (z + 1)*xDimension; 
 values[index+2] = x + (z + 1)*xDimension; 
 values[index+3] = -1; 
 values[index+4] = x + z*xDimension; 
        values[index+5] = (x + 1) + z * xDimension; 
        values[index+6] = (x + 1) + (z + 1)*xDimension; 
        values[index+7] = -1; 
        // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
 
 if ( debug ) 
   System.out.println( "Poly: " + values[index] + " " 
+values[index+1] + 
         " " + values[index+2] + " " + 
values[index+3] + 
         "  (" + x + "," + z + ": " + index + 
")" ); 
 index += 8; 
      } 
    } 
 
    MFInt32 coord_index = (MFInt32) ifs.getEventIn( 
"set_coordIndex" ); 
    coord_index.setValue( index, values ); 
 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    validHeightField = true; 
    // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
    // we're done! 
 
    if ( debug ) 
      System.out.print( "GeoElevationGrid: done." ); 
 
  } 
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  // processEvent deals with all of the eventIns that we 
support. 
  // Currently this includes set_yScale and set_height 
 
  public void processEvent( Event e ) { 
 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    MFFloat height; 
    // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
    if ( debug ) System.out.println( "Event received: " + 
e.getName() ); 
 
    // set_yScale lets you change the vertical exaggeration 
on the fly 
 
    if ( e.getName().equals( "set_yScale" ) ) { 
      ConstSFFloat value = (ConstSFFloat) e.getValue(); 
      yScale = value.getValue(); 
      // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
      height = (MFFloat)getField("height"); 
      if(height.getSize() > 1) 
        regenerate(height); 
      else 
        validHeightField = false; 
      // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
    } 
 
    // set_height lets you change the height values on the 
fly 
 
    if ( e.getName().equals( "set_height" ) ) { 
      ConstMFFloat cmffloat = (ConstMFFloat) e.getValue(); 
      float values[] = new float[cmffloat.getSize()]; 
      cmffloat.getValue( values ); 
      height = new MFFloat( values ); 
      // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
      if(height.getSize()>1) 
        regenerate(height); 
      else 
      { 
        // a null height field was received, clear the 
indexed face set 
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        Node indexedFaceSet, coord; 
        float[] array    = new float[0]; 
        int[]   intArray = new int[0]; 
        int     index    = 0; 
        // Retrieve the Nodes that define the 
IndexedFaceSet 
        coord          = 
(Node)((SFNode)getField("coord")).getValue(); 
        indexedFaceSet = 
(Node)((SFNode)getField("ifs")).getValue(); 
        MFVec3f coord_point = 
(MFVec3f)coord.getExposedField("point"); 
        coord_point.setValue(index, array); 
        MFInt32 coord_index = 
(MFInt32)indexedFaceSet.getEventIn("set_coordIndex"); 
        coord_index.setValue(index, intArray); 
        validHeightField = false; 
      } 
      // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
    } 
 
  } 
 
  // The initialize method is called when the Node is first 
loaded. 
  // Here we grab copies of any necessary 
fields/eventIn/eventOuts 
 
  public void initialize() { 
 
    // Take copies of all the fields for this node 
 
    SFNode   geoOrigin     = (SFNode) getField( "geoOrigin" 
); 
    MFString geoSystem     = (MFString) getField( 
"geoSystem" ); 
 
    SFString xSpacing      = (SFString) getField( 
"xSpacing" ); 
    SFString zSpacing      = (SFString) getField( 
"zSpacing" ); 
 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    MFFloat height; // This used to be a class variable 
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    // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
 
    geoGridOrigin = ((SFString) 
getField("geoGridOrigin")).getValue(); 
    height        = (MFFloat) getField( "height" ); 
    xDimension    = ((SFInt32) getField( "xDimension" 
)).getValue(); 
    zDimension    = ((SFInt32) getField( "zDimension" 
)).getValue(); 
    yScale        = (double)((SFFloat) getField( "yScale" 
)).getValue(); 
 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    // These values are retrieved inside the regenerate 
method now 
//    coord         = (Node) ((SFNode) getField( "coord" 
)).getValue(); 
//    ifs           = (Node) ((SFNode) getField( "ifs" 
)).getValue(); 
    // ************* End CPT Brian Hittner Addition Sep 
2003 ************** 
 
    debug         = ((SFBool) getField( "debug" 
)).getValue(); 
debug = true; 
 
    // convert the spacing strings into double values 
 
    xInc = 
(Double.valueOf(xSpacing.getValue())).doubleValue(); 
    zInc = 
(Double.valueOf(zSpacing.getValue())).doubleValue(); 
 
    // ready to start... 
 
    if ( debug ) 
      System.out.println( "GeoElevationGrid: " + xDimension 
+ " x " + 
     zDimension + "(" + xInc + ":" + zInc + ")" 
); 
 
    // do some sanity checks 
 
    if ( xDimension < 2 || zDimension < 2 ) { 
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      System.out.println( "xDimension and zDimension must 
be >= 2" ); 
      return; 
    } 
 
    // Okay, let's initialise the GeoVRML utility class 
    // These classes should be installed on the user's 
system and in 
    // their CLASSPATH. If they are not, then we can't do 
anything! 
 
    try { 
      geovrml = new GeoVRML(); 
    } catch ( NoClassDefFoundError e ) { 
      System.out.println( "GeoTransform classes not 
installed in CLASSPATH!" ); 
      return; 
    } 
 
    geovrml.setOrigin( geoOrigin ); 
    geo_system = geovrml.VRMLToString( geoSystem ); 
 
    // build the IndexedFaceSet from the GeoElevationGrid 
data 
    // ************* Start CPT Brian Hittner Addition Sep 
2003 ************** 
    // The geoOrigin is stored as a GCC so that coordinate 
points can be 
    //  converted between GCC space and render frame space 
    gccGeoOrigin = geovrml.getOrigin(); 
    // The addCord() method used here will determine the 
north east corner of 
    //  the grid based on the dimension of the grid and the 
geoSystem 
    String tempNorthEast = geovrml.addCoord(geoGridOrigin, 
xInc*(xDimension-1), 
                                    zInc*(zDimension-1), 
0.0, geo_system); 
    if(geo_system.startsWith("UTM")) 
    { 
      // When the TerrainGrid is UTM based, both GDC and 
UTM coordinates for 
      //  the boundaries are needed because checkBounds() 
only uses GDC 
      gdcSouthWest = convertUtmToGdc(geoGridOrigin); 
      gdcNorthEast = convertUtmToGdc(tempNorthEast); 
      utmSouthWest = new Utm_Coord_3d(); 
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      utmNorthEast = new Utm_Coord_3d(); 
      Gdc_To_Utm_Converter.Init(); 
      Gdc_To_Utm_Converter.Convert(gdcSouthWest, 
utmSouthWest); 
      Gdc_To_Utm_Converter.Convert(gdcNorthEast, 
utmNorthEast); 
    } 
    else 
    { 
      // For GDC TerrainGrids, only GDC coordinates are 
needed for the boundaries 
      gdcSouthWest = parseGDC(geoGridOrigin); 
      gdcNorthEast = parseGDC(tempNorthEast); 
      utmSouthWest = null; 
      utmNorthEast = null; 
    } 
 
    // This terrain grid must register with the terrain 
manager so that entities 
    //  can reference this terrain grid for positioning 
data later 
    manager = GeoManager.getGeoManager(); 
    manager.addGrid(this); 
    regenerate(height); // Added the parameter since the 
height field is now 
                        //  a local variable instead of a 
class variable 
 } 
 
 // Takes a gdcCoordinate as a String and turns it into a 
Gdc_Coord_3d 
 private Gdc_Coord_3d parseGDC(String gdcCoordinate) 
 { 
   Gdc_Coord_3d coord; 
   double[] array = new double[3]; 
   StringTokenizer tokenizer = new 
StringTokenizer(gdcCoordinate, " "); 
   for(int i = 0; i <= 2; i++) 
     array[i] = new 
Double(tokenizer.nextToken()).doubleValue(); 
   coord = new Gdc_Coord_3d(array[0], array[1], array[2]); 
   return coord; 
 } 
 
 // Warning: this routine only works if the current 
geoSystemString is set 
 //  to UTM with a zone included 
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 private Gdc_Coord_3d convertUtmToGdc(String utm) 
 { 
   Gcc_Coord_3d tempGcc = geovrml.getCoord(utm, 
geo_system); 
   float[] floatGridArray = new float[3]; 
   floatGridArray[0] = new Double(tempGcc.x).floatValue(); 
   floatGridArray[1] = new Double(tempGcc.y).floatValue(); 
   floatGridArray[2] = new Double(tempGcc.z).floatValue(); 
   String tempOrigin = geovrml.geoCoord(floatGridArray, 
"GD"); 
   // tempOrigin is now in GD coordinate space (lat/long) 
as a String 
   Gdc_Coord_3d tempGdc = parseGDC(tempOrigin); 
   return tempGdc; 
 } 
 
 // receives a location and checks to see if that location 
is within the area 
 //  covered by this particular GeoTerrainGrid 
 public boolean checkBounds(Gdc_Coord_3d location) 
 { 
   if(validHeightField) 
   { 
     if(location.latitude >= gdcSouthWest.latitude && 
        location.latitude <= gdcNorthEast.latitude && 
        location.longitude >= gdcSouthWest.longitude && 
        location.longitude <= gdcNorthEast.longitude) 
       return true; 
     else 
       return false; 
   } 
   else 
     return false; 
 } 
 
 // receives a location and calculates the proper rotation 
that will rotate an 
 //  object to coincide with the normal of the ground at 
that location 
 public SFRotation getOrientation(Gdc_Coord_3d location) 
 { 
   double       x, y, z; 
   int          partialX, partialZ; 
   double       fractionX, fractionZ; 
   double[][]   triCoords = new double[3][3]; 
   double[][]   vectors = new double[2][3]; 
   double[]     tempNormal = new double[3]; 



89 

   double[]     rotationVector = new double[3]; 
   double[]     upVector = new double[3]; 
   SFRotation   outRotation; 
   double       rotationAngle; 
   int          index; 
   MFVec3f      coord_point; 
   float[]      coordinates; 
 
   Node coord; 
   coord          = 
(Node)((SFNode)getField("coord")).getValue(); 
 
   // Check if this terrain grid was built using UTM 
   if(geo_system.startsWith("UTM")) 
   { 
     // the location has to be converted to UTM also to 
calculate elevation 
     Utm_Coord_3d newLocation = new Utm_Coord_3d(); 
     Gdc_To_Utm_Converter.Init(); 
     Gdc_To_Utm_Converter.Convert(location, newLocation); 
     x = newLocation.x; 
     z = newLocation.y; 
   } 
   else 
   { 
     // This grid was built in GDC, so no conversion is 
necessary 
     x = location.latitude; 
     z = location.longitude; 
   } 
 
   // Calculating the orientation requires using the 
coordinates array that was 
   //  built by buildCoordinateSet(height).  Here it is 
retrieved. 
   coord_point = (MFVec3f)coord.getExposedField("point"); 
   // Each coordinate takes 3 float values (x, y, z) 
   coordinates = new float[coord_point.getSize() * 3]; 
   coord_point.getValue(coordinates); 
 
   // I am assuming that every object created uses the 
standard VRML convention 
   //  of up being the Y axis.  GeoVRML up does not matter 
here. 
   upVector[0] = 0.0; 
   upVector[1] = 1.0; 
   upVector[2] = 0.0; 
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   //  This gives the number of postings to travel in the x 
and z directions to 
   //   reach the lower left corner - not the actual x and 
z coordinate values. 
   //   and the value is always truncated (rounded down). 
   if(geo_system.startsWith("UTM")) 
   { 
     partialX = (int)((x - utmSouthWest.x)/xInc); 
     partialZ = (int)((z - utmSouthWest.y)/zInc); 
   } 
   else 
   { 
     partialX = (int)((x - gdcSouthWest.latitude)/xInc); 
     partialZ = (int)((z - gdcSouthWest.longitude)/zInc); 
   } 
   // Next, get the fraction of one space in both the X and 
Z directions left over from 
   //  the partials found above.  These are used to 
determine which half of the square 
   //  this coordinate falls in (lower left half or upper 
right).  This is needed to 
   //  determine which point is the third point and what 
order to grab the second 
   //  and third point in. 
   if(geo_system.startsWith("UTM")) 
   { 
     fractionX = ((x - utmSouthWest.x)/xInc) - partialX; 
     fractionZ = ((z - utmSouthWest.y)/zInc) - partialZ; 
   } 
   else 
   { 
     fractionX = ((x - gdcSouthWest.latitude)/xInc) - 
partialX; 
     fractionZ = ((z - gdcSouthWest.longitude)/zInc) - 
partialZ; 
   } 
 
   // The terrain data is received as a 1 dimensional array 
of height values. 
   //  The array can be thought of as a checkerboard 
pattern with height values 
   //  coinciding with every corner of every square.  The 
terrain is drawn by 
   //  breaking up the checkerboard into triangles.  This 
code uses the following 
   //  pattern to break up the squares: 
   //     +---+ 
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   //     |  /| 
   //     | / | 
   //     |/  | 
   //     +---+ 
   // Extract the three coordinates of the triangle that 
contains the given location. 
   //  each of these coordinates will have the geoOrigin 
added to it to bring the 
   //  point back into GCC space from screen space. 
   // The first coordinate is always the lower left corner. 
   index = (partialX + partialZ*xDimension)*3;  // index 
now points at lower left corner 
   triCoords[0][0] = coordinates[index] + gccGeoOrigin.x; 
   triCoords[0][1] = coordinates[index+1] + gccGeoOrigin.y; 
   triCoords[0][2] = coordinates[index+2] + gccGeoOrigin.z; 
 
   // FractionX and fractionZ are used to determine which 
half of the square 
   //  this coordinate is in (the lower right or upper 
left). If fractionX is 
   //  greater than fractionZ, then this coordinate is in 
the lower right half. 
   if(fractionX > fractionZ) 
   { 
     // Get the lower right corner of the square for 
coordinate 2 
     index = ((partialX + 1) + partialZ*xDimension)*3; 
     triCoords[1][0] = coordinates[index] + gccGeoOrigin.x; 
     triCoords[1][1] = coordinates[index+1] + 
gccGeoOrigin.y; 
     triCoords[1][2] = coordinates[index+2] + 
gccGeoOrigin.z; 
     // Get the upper right corner of the square for 
coordinate 3 
     index = ((partialX + 1) + (partialZ + 
1)*xDimension)*3; 
     triCoords[2][0] = coordinates[index] + gccGeoOrigin.x; 
     triCoords[2][1] = coordinates[index+1] + 
gccGeoOrigin.y; 
     triCoords[2][2] = coordinates[index+2] + 
gccGeoOrigin.z; 
   } 
   else 
   { 
     // Get the upper right corner of the square for 
coordinate 2 
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     index = ((partialX + 1) + (partialZ + 
1)*xDimension)*3; 
     triCoords[1][0] = coordinates[index] + gccGeoOrigin.x; 
     triCoords[1][1] = coordinates[index+1] + 
gccGeoOrigin.y; 
     triCoords[1][2] = coordinates[index+2] + 
gccGeoOrigin.z; 
     // Get the upper left corner of the square for 
coordinate 3 
     index = (partialX + (partialZ + 1)*xDimension)*3; 
     triCoords[2][0] = coordinates[index] + gccGeoOrigin.x; 
     triCoords[2][1] = coordinates[index+1] + 
gccGeoOrigin.y; 
     triCoords[2][2] = coordinates[index+2] + 
gccGeoOrigin.z; 
   } 
 
   // Get two vectors from the coordinates of the plane.  
It is important to 
   //  get the vectors in the order shown or you could get 
a tangent normal pointing 
   //  directly into the polygon instead of directly out of 
the polygon 
   for(int i = 0; i <= 2; i++) 
   { 
     vectors[0][i] = triCoords[0][i] - triCoords[1][i]; 
     vectors[1][i] = triCoords[0][i] - triCoords[2][i]; 
   } 
 
   // Next, determine the normal using a cross product: 
   //                                   |      i              
j              k      | 
   //  normal = vector[0] x vector[1] = |vectors[0][0]  
vectors[0][1]  vectors[0][2]| 
   //                                   |vectors[1][0]  
vectors[1][1]  vectors[1][2]| 
   tempNormal[0] = vectors[0][1]*vectors[1][2] - 
vectors[0][2]*vectors[1][1]; 
   tempNormal[1] = (vectors[0][0]*vectors[1][2] - 
vectors[0][2]*vectors[1][0])*(-1); 
   tempNormal[2] = vectors[0][0]*vectors[1][1] - 
vectors[0][1]*vectors[1][0]; 
 
   // To calculate the vector we must rotate around to make 
an object coincide 
   //  with the normal we have to take the cross product of 
the normal vector 
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   //  and the vector that represents the up direction for 
the object that is 
   //  to be rotated. 
   rotationVector[0] = upVector[1]*tempNormal[2] - 
upVector[2]*tempNormal[1]; 
   rotationVector[1] = (-1)*(upVector[0]*tempNormal[2] - 
upVector[2]*tempNormal[0]); 
   rotationVector[2] = upVector[0]*tempNormal[1] - 
upVector[1]*tempNormal[0]; 
   // Normalize the rotationVector so that the x, y, and z 
values will definately 
   //  fit into float variables 
   double rotationMagnitude = 
Math.sqrt(rotationVector[0]*rotationVector[0] + 
       rotationVector[1]*rotationVector[1] + 
rotationVector[2]*rotationVector[2]); 
   rotationVector[0] = rotationVector[0]/rotationMagnitude; 
   rotationVector[1] = rotationVector[1]/rotationMagnitude; 
   rotationVector[2] = rotationVector[2]/rotationMagnitude; 
   // We also need the angle between the upVector and 
normal vector so that we 
   //  know how far to rotate the object to coincide with 
the normal vector. 
   //  The cosine of this angle is equal to the dot product 
of the upVector 
   //  and normal vector. 
   double dotProduct = upVector[0]*tempNormal[0] + 
upVector[1]*tempNormal[1] + 
                       upVector[2]*tempNormal[2]; 
   double upMagnitude = Math.sqrt(upVector[0]*upVector[0] + 
upVector[1]*upVector[1] + 
                                  upVector[2]*upVector[2]); 
   double normalMagnitude = 
Math.sqrt(tempNormal[0]*tempNormal[0] + 
tempNormal[1]*tempNormal[1] 
                                      + 
tempNormal[2]*tempNormal[2]); 
   rotationAngle = 
Math.acos(dotProduct/(upMagnitude*normalMagnitude)); 
   // We now have what we need to build the rotation vector 
that the target object 
   //  will use to rotate itself to coincide with the 
normal 
   outRotation = new SFRotation(new 
Double(rotationVector[0]).floatValue(), 
                        new 
Double(rotationVector[1]).floatValue(), 
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                        new 
Double(rotationVector[2]).floatValue(), 
                        new 
Double(rotationAngle).floatValue()); 
   return outRotation; 
 } 
 
 public Gdc_Coord_3d getElevation(Gdc_Coord_3d location) 
 { 
   double       x, y, z; 
   int          partialX, partialZ; 
   double       fractionX, fractionZ; 
   double[][]   triCoords = new double[3][3]; 
   double[][]   vectors = new double[2][3]; 
   double[]     tempNormal = new double[3]; 
   double[]     upVector = new double[3]; 
   int          index; 
   Gdc_Coord_3d outLocation = new Gdc_Coord_3d(); 
   MFFloat      height; 
   float[]      heightArray; 
   double       xOrigin, zOrigin; 
 
   if(geo_system.startsWith("UTM")) 
   { 
     // the location has to be converted to UTM also to 
calculate elevation 
     Utm_Coord_3d newLocation = new Utm_Coord_3d(); 
     Gdc_To_Utm_Converter.Init(); 
     Gdc_To_Utm_Converter.Convert(location, newLocation); 
     x = newLocation.x; 
     z = newLocation.y; 
     xOrigin = utmSouthWest.x; 
     zOrigin = utmSouthWest.y; 
   } 
   else 
  { 
     // This grid was built in GDC, so no conversion is 
necessary 
     x = location.latitude; 
     z = location.longitude; 
     xOrigin = gdcSouthWest.latitude; 
     zOrigin = gdcSouthWest.longitude; 
   } 
 
   height = (MFFloat)getField("height"); 
   heightArray = new float[height.getSize()]; 
   height.getValue(heightArray); 
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   // Get the partial values - these are the nearest whole 
number coordinates 
   //  past zero to locate the lower left corner of the 
square this coordinate is in. 
   //  Note: this gives the number of postings to travel in 
the x and y directions to 
   //   reach the lower left corner - not the actual x and 
y coordinate values. 
   partialX = (int)((x - xOrigin)/xInc); 
   partialZ = (int)((z - zOrigin)/zInc); 
 
   // Next, get the fraction of one space in both the X and 
Z directions left over from 
   //  the partials found above.  These are used to 
determine which half of the square 
   //  this coordinate falls in (lower left half or upper 
right).  This is needed to 
   //  determine which point is the third point and what 
order to grab the second 
   //  and third point in. 
   fractionX = ((x - xOrigin)/xInc) - partialX; 
   fractionZ = ((z - zOrigin)/zInc) - partialZ; 
 
   // We need to get 3 coordinates so we can define a plane 
and 
   //  determine the elevation at a specific point 
   // The first coordinate is the lower left corner of this 
grid box 
   triCoords[0][0] = (partialX * xInc) + xOrigin; 
   triCoords[0][1] = heightArray[(partialZ * zDimension + 
partialX)]; 
   triCoords[0][2] = (partialZ * zInc) + zOrigin; 
   // The fractionX and fractionZ are used to determine 
which half of the square 
   //  this coordinate is in (the lower right or upper 
left). 
   //  If fractionX is greater than fractionZ, then this 
coordinate is in the 
   //  lower right half of the square.  This means we need 
the lower right corner 
   //  and the upper right triangle for the 2nd and 3rd 
coordinates. 
   if(fractionX > fractionZ) 
   { 
     // Get the lower right corner of the square for 
coordinate 2 
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     triCoords[1][0] = ((partialX + 1) * xInc) + xOrigin; 
     triCoords[1][1] = heightArray[partialZ*zDimension + 
(partialX + 1)]; 
     triCoords[1][2] = (partialZ * zInc) + zOrigin; 
     // Get the upper right corner of the square for 
coordinate 3 
     triCoords[2][0] = ((partialX + 1) * xInc) + xOrigin; 
     triCoords[2][1] = heightArray[(partialZ + 
1)*zDimension + (partialX + 1)]; 
     triCoords[2][2] = ((partialZ + 1) * zInc) + zOrigin; 
  } 
   // The else clause means that we are in the upper left 
half of the square 
   //  and need the upper right corner and upper left 
corner. 
   else 
   { 
     // Get the upper right corner of the square for 
coordinate 2 
     triCoords[1][0] = ((partialX + 1) * xInc) + xOrigin; 
     triCoords[1][1] = heightArray[(partialZ + 
1)*zDimension + (partialX + 1)]; 
     triCoords[1][2] = ((partialZ + 1) * zInc) + zOrigin; 
     // Get the upper left corner of the square for 
coordinate 3 
     triCoords[2][0] = (partialX * xInc) + xOrigin; 
     triCoords[2][1] = heightArray[(partialZ + 
1)*zDimension + partialX]; 
     triCoords[2][2] = ((partialZ + 1) * zInc) + zOrigin; 
   } 
 
   // The 3 coordinates just found are what we need to 
determine the elevation at the 
   //  specified point and the normal for the location. 
   // First, get two vectors from the coordinates of the 
plane.  It is important to 
   //  get the vectors in the order shown or you could get 
a tangent normal pointing 
   //  directly into the polygon instead of directly out of 
the polygon 
   for(int i = 0; i <= 2; i++) 
   { 
     vectors[1][i] = triCoords[0][i] - triCoords[2][i]; 
     vectors[0][i] = triCoords[0][i] - triCoords[1][i]; 
   } 
 
   // Next, determine the normal using a cross product: 
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   //                                   |      i              
j              k      | 
   //  normal = vector[0] x vector[1] = |vectors[0][0]  
vectors[0][1]  vectors[0][2]| 
   //                                   |vectors[1][0]  
vectors[1][1]  vectors[1][2]| 
   tempNormal[0] = vectors[0][1]*vectors[1][2] - 
vectors[0][2]*vectors[1][1]; 
   tempNormal[1] = (vectors[0][0]*vectors[1][2] - 
vectors[0][2]*vectors[1][0])*(-1); 
   tempNormal[2] = vectors[0][0]*vectors[1][1] - 
vectors[0][1]*vectors[1][0]; 
 
   // Finally, calculate the height for the original 
coordinate using the equation: 
   // 
   //   0 = normal[0](x - coordinates[0][0]) + normal[1](y 
- coordinates[0][1]) + 
   //       normal[2](z - coordinates[0][2] 
   // 
   y = ((-1)*tempNormal[0]*(x - triCoords[0][0]) - 
tempNormal[2]*(z - triCoords[0][2])) 
       / tempNormal[1] + triCoords[0][1]; 
 
   // We now have the calculated elevation which can be 
combined with the lat 
   //  and long values passed in to get the new coordinate 
with elevation equal 
   //  to the terrain. 
   outLocation.elevation = y; 
   outLocation.latitude = location.latitude; 
   outLocation.longitude = location.longitude; 
 
   return outLocation; 
 } 
 // ************* End CPT Brian Hittner Addition Sep 2003 
************** 
} 
 
// EOF: GeoElevationGrid.java 
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C. GEOLOCATION3 NODE 

This class is the interface for objects that need to use GeoTerrainGrids.  This class 

allows the user to decide whether to have GeoTerrainGrids automatically set the 

elevation of the object to surface level and whether to have the orientation of the object 

coincide with the normal of the terrain.  Otherwise, the node operates exactly as its 

predecessors GeoLocation and GeoLocation2.  This code has the same license as the 

GeoTerrainGrid does as it is also originally written by SRI. 

// 
// Filename: GeoLocation3.java 
// 
// Authors: 
//   Martin Reddy, SRI International - 21 August 1999 
//   John Brecht, SRI Internation - 31 March 2000 
//   CPT Brian Hittner, US Army, Naval Postgraduate School 
student - Sep 2003 
// 
// Purpose: 
//   This class implements a new Transform node for VRML. 
It allows you 
//   to take any arbitrary VRML context and geo-reference 
it, i.e. place 
//   it at a specific point on the planet. 
// 
//   This code requires access to the GeoTransform Java 
package, included 
//   as part of the GeoVRML source code distribution. 
// 
// License: 
//   The contents of this file are subject to GeoVRML 
Public License 
//   Version 1.0 (the "License"); you may not use this file 
except in 
//   compliance with the License. You may obtain a copy of 
the License at 
//   http://www.geovrml.org/1.0/license/. 
// 
//   Software distributed under the License is distributed 
on an "AS 
//   IS" basis, WITHOUT WARRANTY OF ANY KIND, either 
express or 
//   implied. See the License for the specific language 
governing 
//   rights and limitations under the License. 
// 
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//   Portions are Copyright (c) SRI International, 2000. 
// 
// Revision: 
//  $Id: GeoLocation.java,v 1.1.1.1 2000/06/15 16:49:27 
reddy Exp $ 
// 
//  Martin Reddy (21 Aug 1999) - initial version 
//  John Brecht (31 Mar 2000) - support set_geoCoords 
eventIn 
//  Brian Hittner (Sep 2003) - works with GeoManager and 
added support 
//                        for autoElevation and 
autoSurfaceOrientation booleans 
// 
 
import java.lang.*; 
import vrml.*; 
import vrml.field.*; 
import vrml.node.*; 
import geotransform.coords.*; 
import org.web3d.geovrml.GeoVRML; 
// ***************** Start CPT Brian Hittner change 
******************** 
import java.util.*; 
// *****************  End CPT Brian Hittner change  
******************** 
 
public class GeoLocation3 extends Script { 
 
  MFString geoSystem; 
  SFNode geoOrigin; 
  GeoVRML geovrml; 
  Node transform; 
  boolean debug; 
  SFString geoCoords_changed; 
// ***************** Start CPT Brian Hittner change 
******************** 
  boolean autoElevation, autoSurfaceOrientation; 
  GeoManager manager; 
  SFBool autoElevation_changed, 
autoSurfaceOrientation_changed; 
// *****************  End CPT Brian Hittner change  
******************** 
 
 
  // process the set_geoCoords eventIn by calling 
updateGeoCoords() 
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  // and produce the geoCoords_changed eventOut. 
 
 
  public void processEvent( Event e ) { 
    String name = e.getName(); 
    if ( debug ) System.out.println( "Event received: " + 
name ); 
    if ( name.equals( "set_geoCoords" ) ) { 
      ConstSFString csfstring = (ConstSFString) 
e.getValue(); 
      SFString sfstring = new SFString( 
csfstring.getValue() ); 
      updateGeoCoords(sfstring); 
      geoCoords_changed.setValue(sfstring); 
    } 
// ***************** Start CPT Brian Hittner change 
******************** 
    if(name.equals("set_autoElevation")) 
    { 
      ConstSFBool csfbool = (ConstSFBool)e.getValue(); 
      autoElevation = csfbool.getValue(); 
      ConstSFString csfstring = (ConstSFString) 
e.getValue(); 
      SFString sfstring = new SFString( 
csfstring.getValue() ); 
      updateGeoCoords(sfstring); 
      autoElevation_changed.setValue(csfbool); 
    } 
    if(name.equals("set_autoSurfaceOrientation")) 
    { 
      ConstSFBool csfbool2 = (ConstSFBool)e.getValue(); 
      autoSurfaceOrientation = csfbool2.getValue(); 
      ConstSFString csfstring = (ConstSFString) 
e.getValue(); 
      SFString sfstring = new SFString( 
csfstring.getValue() ); 
      updateGeoCoords(sfstring); 
      autoSurfaceOrientation_changed.setValue(csfbool2); 
    } 
// *****************  End CPT Brian Hittner change  
******************** 
  } 
 
  // The initialize method is called when the Node is first 
loaded. 
  // Here we grab copies of any necessary 
fields/eventIn/eventOuts 
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  // and do the coordinate transformation in order to find 
the 
  // correct geolocation for the transform's childrens. 
  public void initialize() { 
    // Take copies of all the fields for this node 
    geoOrigin   = (SFNode) getField( "geoOrigin" ); 
    geoSystem = (MFString) getField( "geoSystem" ); 
    SFString geoCoords = (SFString) getField( "geoCoords" 
); 
    transform     = (Node) ((SFNode) getField( "transform" 
)).getValue(); 
    debug      = ((SFBool) getField( "debug" )).getValue(); 
    geoCoords_changed = (SFString) getEventOut( 
"geoCoords_changed" ); 
 
// ***************** Start CPT Brian Hittner change 
******************** 
    autoElevation = 
((SFBool)getField("autoElevation")).getValue(); 
    autoSurfaceOrientation = 
((SFBool)getField("autoSurfaceOrientation")).getValue(); 
    autoElevation_changed = 
(SFBool)getEventOut("autoElevation_changed"); 
    autoSurfaceOrientation_changed = 
        
(SFBool)getEventOut("autoSurfaceOrientation_changed"); 
    manager = GeoManager.getGeoManager(); 
// *****************  End CPT Brian Hittner change  
******************** 
 
    if ( debug ) System.out.println( "GeoLocation:" ); 
 
    // Okay, let's initialise the GeoVRML utility class 
    // These classes should be installed on the user's 
system and in 
    // their CLASSPATH. If they are not, then we can't do 
anything! 
    try { 
      geovrml = new GeoVRML(); 
    } catch ( NoClassDefFoundError e ) { 
      System.out.println( "GeoTransform classes not 
installed in CLASSPATH!" ); 
      return; 
    } 
    geovrml.setOrigin( geoOrigin ); 
    updateGeoCoords(geoCoords); 
  } 
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    // Converts the inputed geoCoords to GCC and sets the 
transform 
    // of the Node appropriately. 
  public void updateGeoCoords(SFString geoCoords) { 
// ***************** Start CPT Brian Hittner change 
******************** 
    Gdc_Coord_3d tempPosition = null; 
    GeoTerrainGrid terrainGrid = null; 
    SFRotation tempRotation; 
    // If autoElevation or autoSurfaceOrientation is set, 
then a GeoTerrainGrid 
    //  for this location is needed 
    if(autoElevation || autoSurfaceOrientation) 
    { 
      // The coordinate must be in GDC, so UTM coordinates 
must be converted 
      if(geoSystem.toString().startsWith("UTM")) 
        tempPosition = 
convertUtmToGdc(geoCoords.getValue()); 
      else 
        tempPosition = parseGDC(geoCoords.getValue()); 
      terrainGrid = manager.getGrid(tempPosition); 
      if(terrainGrid==null) 
      { 
        debugOut("Manager did not locate a suitable terrain 
grid for: " + 
                 geoCoords.toString()); 
        debugOut("GDC_Coord_3d: Latitude: " + 
tempPosition.latitude + " Longitude: " 
                 + tempPosition.longitude + " Elevation: " 
+ tempPosition.elevation); 
        return; 
      } 
      else 
      { 
        // When autoElevation is true, use the terrain grid 
to determine elevation 
        if(autoElevation) 
        { 
          // This call to getElevation() will fill in the 
proper elevation 
          tempPosition = 
terrainGrid.getElevation(tempPosition); 
          // Replace geoCoords current value with the new 
value that has elevation 
          geoCoords.setValue(gdcToString(tempPosition)); 
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        } 
      } 
    } 
// *****************  End CPT Brian Hittner change  
******************** 
 
    // Find out the location that the user wants to 
georeference to 
    // This is essentially the translation vector for the 
transform 
    Gcc_Coord_3d gcc = geovrml.getCoord( geoCoords, 
geoSystem ); 
    SFVec3f xform_trans = (SFVec3f) 
transform.getExposedField( "translation" ); 
    xform_trans.setValue( (float) gcc.x, (float) gcc.y, 
(float) gcc.z ); 
    if ( debug ) 
      System.out.println( "  translation = " + gcc.x +" "+ 
gcc.y +" "+ gcc.z ); 
 
    // Now let's work out the orientation at that location 
in order 
    // to maintain a view where +Y is in the direction of 
gravitional 
    // up for that region of the planet's surface. This 
will be the 
    // value of the rotation vector for the transform. 
    float orient[] = new float[4]; 
 
    SFRotation xform_rot = (SFRotation) 
transform.getExposedField("rotation"); 
// ***************** Start CPT Brian Hittner change 
******************** 
    if(autoSurfaceOrientation) 
    { 
      tempRotation = 
terrainGrid.getOrientation(tempPosition); 
      xform_rot.setValue(tempRotation); 
    } 
// *****************  End CPT Brian Hittner change  
******************** 
    else 
    { 
      geovrml.getLocalOrientation(gcc, orient); 
      xform_rot.setValue(orient[0], orient[1], orient[2], 
orient[3]); 
    } 
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    if ( debug ) 
      System.out.println( "  rotation = " + orient[0] + " " 
+ orient[1] + 
     " " + orient[2] + " " + orient[3] + " (" + 
     orient[3] * 57.29578f + " deg)" ); 
 
    // Finally, we can set the scale field of the transform 
based 
    // upon the global GeoVRML class scaleFactor. 
    SFVec3f xform_scale = (SFVec3f) 
transform.getExposedField( "scale" ); 
    float   scale = (float) ( 1.0 / geovrml.scaleFactor ); 
    xform_scale.setValue( scale, scale, scale ); 
  } 
 
// ***************** Start CPT Brian Hittner change 
******************** 
  // Takes a gdcCoordinate as a String and turns it into a 
Gdc_Coord_3d 
  private Gdc_Coord_3d parseGDC(String gdcCoordinate) 
  { 
    Gdc_Coord_3d coord; 
    double[] array = new double[3]; 
    StringTokenizer tokenizer = new 
StringTokenizer(gdcCoordinate, " "); 
    for(int i = 0; i <= 2; i++) 
      array[i] = new 
Double(tokenizer.nextToken()).doubleValue(); 
    coord = new Gdc_Coord_3d(array[0], array[1], array[2]); 
    return coord; 
  } 
 
  // Takes a Gdc_Coord_3d coordinate, and returns a string 
(in GDC) 
  private String gdcToString(Gdc_Coord_3d coordinate) 
  { 
    String coordinateString = new String(); 
    coordinateString += new 
Double(coordinate.latitude).toString(); 
    coordinateString += " "; 
    coordinateString += new 
Double(coordinate.longitude).toString(); 
    coordinateString += " "; 
    coordinateString += new 
Double(coordinate.elevation).toString(); 
    return coordinateString; 
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  } 
 
  // Warning: this routine only works if the current 
geoSystemString is set 
  //  to UTM with a zone included 
  private Gdc_Coord_3d convertUtmToGdc(String utm) 
  { 
    Gcc_Coord_3d tempGcc = geovrml.getCoord(utm, 
geoSystem.toString()); 
    float[] floatGridArray = new float[3]; 
    floatGridArray[0] = new Double(tempGcc.x).floatValue(); 
    floatGridArray[1] = new Double(tempGcc.y).floatValue(); 
    floatGridArray[2] = new Double(tempGcc.z).floatValue(); 
    String tempLocation = geovrml.geoCoord(floatGridArray, 
"GD"); 
    // tempOrigin is now in GD coordinate space (lat/long) 
as a String 
    Gdc_Coord_3d tempGdc = parseGDC(tempLocation); 
    return tempGdc; 
  } 
 
  public void debugOut(String message) 
  { 
    if(debug) 
      System.out.println(message); 
  } 
// *****************  End CPT Brian Hittner change  
******************** 
} 
 
// EOF: GeoLocation.java 
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D. EXAMPLE OF GEOTERRAINGRID 

This code is shown in VRML format and declares a GeoTerrainGrid.  This code 

does not display anything by itself because it does not have any viewpoint defined.  The 

purpose of this code is to be used as part of another X3D or VRML program.  The 

majority of the data for the terrain was removed, though, because it just generated pages 

of numbers.  For the full version of this program with the data intact, check the SAVAGE 

website.  There is an indexed line set in this code that is not needed for the code to work.  

It was added simply to outline the terrain which makes each individual terrain grid much 

more visible when rendered as part of a group of terrain grids 

 

#VRML V2.0 utf8 
# X3D-to-VRML-97 XSL translation autogenerated by 
X3dToVrml97.xsl 
# 
http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97
.xsl 
 
# [X3D] VRML V3.0 utf8 
EXTERNPROTO GeoCoordinate [ 
  field  SFNode    geoOrigin    # NULL 
  field  MFString  geoSystem    # [ "GDC" ] 
  field  MFString  point        # [] 
] [ 
    "GeoVRML/1.1/protos/GeoCoordinate.wrl#GeoCoordinate" 
    
"../../GeoVRML/1.1/protos/GeoCoordinate.wrl#GeoCoordinate" 
    "C:/Program 
Files/GeoVRML/1.1/protos/GeoCoordinate.wrl#GeoCoordinate" 
    "file:///C|/Program 
Files/GeoVRML/1.1/protos/GeoCoordinate.wrl#GeoCoordinate" 
    
"urn:web3d:geovrml:1.0/protos/GeoCoordinate.wrl#GeoCoordina
te" 
    
"http://www.geovrml.org/1.0/protos/GeoCoordinate.wrl#GeoCoo
rdinate" 
  ] 
EXTERNPROTO GeoTerrainGrid [ 
  field        SFNode     geoOrigin         #NULL 
  field        MFString   geoSystem         #["GD" "WE"] 
  field        SFString   geoGridOrigin     #"0 0 0" 
  field        SFInt32    xDimension        #0       # [0,) 
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  field        SFString   xSpacing          #"1.0"   # (0,) 
  field        SFInt32    zDimension        #0       # [0,) 
  field        SFString   zSpacing          #"1.0"   # (0,) 
  field        MFFloat    height            #[]      # (-,) 
  eventIn      MFFloat    set_height 
  field        SFFloat    yScale            #1.0 
  eventIn      SFFloat    set_yScale 
  exposedField SFNode     color             #NULL 
  exposedField SFNode     texCoord          
#TextureCoordinate {} 
  exposedField SFNode     normal            #NULL 
  field        SFBool     normalPerVertex   #TRUE 
  field        SFBool     ccw               #TRUE 
  field        SFBool     colorPerVertex    #TRUE 
  field        SFFloat    creaseAngle       #0       # [0,] 
  field        SFBool     solid             #TRUE 
] [ 
 "GeoTerrainGrid.wrl#GeoTerrainGrid" 
  ] 
EXTERNPROTO GeoMetadata [ 
  exposedField MFString url        # [] 
  exposedField MFString summary    # [] 
  exposedField MFNode   data       # [] 
] [ 
    "../../GeoVRML/1.1/protos/GeoMetadata.wrl#GeoMetadata" 
    "GeoVRML/1.1/protos/GeoMetadata.wrl#GeoMetadata" 
    "C:/Program 
Files/GeoVRML/1.1/protos/GeoMetadata.wrl#GeoMetadata" 
    "file:///C|/Program 
Files/GeoVRML/1.1/protos/GeoMetadata.wrl#GeoMetadata" 
    
"urn:web3d:geovrml:1.0/protos/GeoMetadata.wrl#GeoMetadata" 
    
"http://www.geovrml.org/1.0/protos/GeoMetadata.wrl#GeoMetad
ata" 
  ] 
EXTERNPROTO GeoOrigin [ 
 exposedField  MFString  geoSystem    # [ "GDC" ] 
 exposedField  SFString  geoCoords    # "" 
 field         SFBool    rotateYUp    # FALSE 
] [ 
    "GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "../../GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "C:/Program 
Files/GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "file:///C|/Program 
Files/GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
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    "urn:web3d:geovrml:1.0/protos/GeoOrigin.wrl#GeoOrigin" 
    
"http://www.geovrml.org/1.0/protos/GeoOrigin.wrl#GeoOrigin" 
  ] 
# [Scene] 
 
GeoMetadata { 
  summary [ "DTED2, N290E520" ] 
  url [ "N290E520DTED2.wrl" ] 
} 
DEF ORIGIN GeoOrigin { 
  geoCoords "29.0 52.0 0.0" 
} 
Shape { 
  appearance Appearance { 
    material Material { 
      diffuseColor 0.4 0.6 0.3 
      emissiveColor 0 0.05 0 
    } 
  } 
  geometry GeoTerrainGrid { 
    geoOrigin USE ORIGIN 
    creaseAngle .785 
    geoGridOrigin "29.71186440677966 52.6271186440678 0" 
    geoSystem [ "GDC" ] 
    height [ 2013 2012 2011 2009 2007 2007 2008 2010 2013 
2015 2017 2022  
                    --- Data Removed for Brevity --- 
1972 1978 1986 1995 2000 1999 1993 1981 1970 1957 1946 1934 
1921 ] 
    xDimension 61 
    xSpacing "2.824074074074074E-4" 
    zDimension 61 
    zSpacing "2.824074074074074E-4" 
  } 
} 
Shape { 
  appearance Appearance { 
    material Material { 
      emissiveColor 0.8 0.8 0.8 
    } 
  } 
  geometry DEF LINESET IndexedLineSet { 
    coordIndex [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 
                    --- Data Removed for Brevity --- 
232 233 234 235 236 237 238 239 240 241 242 243 -1 -1 ] 
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    coord GeoCoordinate { 
      geoOrigin USE ORIGIN 
      geoSystem [ "GDC" ] 
      point [ "29.7118644 52.6271186 2013.0 29.7121468 
52.6271186 2004.0  
                    --- Data Removed for Brevity --- 
52.64406308851225 1921.0" ] 
    } 
  } 
} 
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E. MULTIPLE GEOTERRAINGRIDS AND A GEOLOCATION3 EXAMPLE 

This is an example file that brings everything together.  Multiple GeoTerrainGrids 

are created and a tank is driven across the grids which is automatically positioned on the 

terrain and oriented to it.  This program requires seventeen other files which are not 

listed.  However, the entire demo is posted on the SAVAGE web site.  This program is an 

excellent example of how current GeoVRML structures such as a 

GeoPositionInterpolator will work with the new nodes created in this thesis.  The tank in 

the program travels seamlessly through the GeoTerrainGrids in the scene. 

 

#VRML V2.0 utf8 
# X3D-to-VRML-97 XSL translation autogenerated by 
X3dToVrml97.xsl 
# 
http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97
.xsl 
 
# [X3D] VRML V3.0 utf8 
 
# [head] 
EXTERNPROTO GeoLocation3 [ 
  field    SFNode   geoOrigin              #NULL 
  field    MFString geoSystem              #[ "GDC" ] 
  field    SFString geoCoords              #"" 
  field    MFNode   children               #[] 
  field    SFBool   autoElevation          #FALSE 
  field    SFBool   autoSurfaceOrientation #FALSE 
  field    SFBool   debug                #FALSE 
  eventIn  SFString set_geoCoords 
  eventOut SFString geoCoords_changed 
  eventIn  SFBool   set_autoElevation 
  eventOut SFBool   autoElevation_changed 
  eventIn  SFBool   set_autoSurfaceOrientation 
  eventOut SFBool   autoSurfaceOrientation_changed 
] [ 
 "GeoLocation3.wrl#GeoLocation3" 
] 
 
EXTERNPROTO GeoOrigin [ 
 exposedField  MFString  geoSystem    # [ "GDC" ] 
 exposedField  SFString  geoCoords    # "" 
 field         SFBool    rotateYUp    # FALSE 
] [ 



111 

    "GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "../../GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "C:/Program 
Files/GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "file:///C|/Program 
Files/GeoVRML/1.1/protos/GeoOrigin.wrl#GeoOrigin" 
    "urn:web3d:geovrml:1.0/protos/GeoOrigin.wrl#GeoOrigin" 
    
"http://www.geovrml.org/1.0/protos/GeoOrigin.wrl#GeoOrigin" 
  ] 
 
EXTERNPROTO GeoViewpoint [ 
 field         SFNode      geoOrigin        # NULL 
 field         MFString    geoSystem        # ["GDC"] 
 field         SFString    position         # "0 0 100000" 
 field         SFRotation  orientation      # 0 0 1 0 
 exposedField  SFFloat     fieldOfView      # 0.785398 
 exposedField  SFBool      jump             # TRUE 
 exposedField  MFString    navType          # 
["EXAMINE","ANY"] 
 exposedField  SFBool      headlight        # TRUE 
 field         SFString    description      # "" 
 field         SFFloat     speed            # 1.0 
 eventIn       SFString    set_position 
 eventIn       SFString    set_orientation 
 eventIn       SFBool      set_bind 
 eventOut      SFTime      bindTime 
 eventOut      SFBool      isBound 
] [ 
    "GeoVRML/1.0/protos/GeoViewpoint.wrl#GeoViewpoint" 
    
"../../GeoVRML/1.0/protos/GeoViewpoint.wrl#GeoViewpoint" 
    "C:/Program 
Files/GeoVRML/1.0/protos/GeoViewpoint.wrl#GeoViewpoint" 
    "file:///C|/Program 
Files/GeoVRML/1.0/protos/GeoViewpoint.wrl#GeoViewpoint" 
    
"urn:web3d:geovrml:1.0/protos/GeoViewpoint.wrl#GeoViewpoint
" 
    
"http://www.geovrml.org/1.0/protos/GeoViewpoint.wrl#GeoView
point" 
  ] 
 
EXTERNPROTO GeoPositionInterpolator [ 
 eventIn  SFFloat   set_fraction 
 field    SFNode    geoOrigin 
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 field    MFString geoSystem 
 field    MFFloat   key 
 field    MFString keyValue 
 eventOut SFVec3f   value_changed 
 eventOut SFString  geovalue_changed 
] [ 
    
"GeoVRML/1.0/protos/GeoPositionInterpolator.wrl#GeoPosition
Interpolator" 
    
"../../GeoVRML/1.0/protos/GeoPositionInterpolator.wrl#GeoPo
sitionInterpolator" 
    "C:/Program 
Files/GeoVRML/1.0/protos/GeoPositionInterpolator.wrl#GeoPos
itionInterpolator" 
    "file:///C|/Program 
Files/GeoVRML/1.0/protos/GeoPositionInterpolator.wrl#GeoPos
itionInterpolator" 
    
"urn:web3d:geovrml:1.0/protos/GeoPositionInterpolator.wrl#G
eoPositionInterpolator" 
    
"http://www.geovrml.org/1.0/protos/GeoPositionInterpolator.
wrl#GeoPositionInterpolator" 
] 
 
# [Scene] 
 
NavigationInfo { 
  speed 5000 
} 
DEF ORIGIN GeoOrigin { 
  geoCoords "29.0 52.0 0.0" 
} 
DEF ViewPoint GeoViewpoint { 
  geoOrigin USE ORIGIN 
  geoSystem [ "GD" "WE" ] 
  orientation 1.0 0.0 0.0 -0.5 
  position "29.68 52.66 4000" 
} 
DEF Top Group { 
  children [ 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2942E5237DTED2.wrl"  
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   "N2942E5237DTED2.wrl" 
  ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2942E5238DTED2.wrl"  
   "N2942E5238DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2942E5239DTED2.wrl"  
   "N2942E5239DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2942E5240DTED2.wrl"  
   "N2942E5240DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2943E5237DTED2.wrl"  
   "N2943E5237DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2943E5238DTED2.wrl"  
   "N2943E5238DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  



114 

  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2943E5239DTED2.wrl"  
   "N2943E5239DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2943E5240DTED2.wrl"  
   "N2943E5240DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2944E5237DTED2.wrl"  
   "N2944E5237DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2944E5238DTED2.wrl"  
   "N2944E5238DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2944E5239DTED2.wrl"  
   "N2944E5239DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2944E5240DTED2.wrl"  
   "N2944E5240DTED2.wrl" 
   ] 
      } 
      Inline { 
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        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2945E5237DTED2.wrl"  
   "N2945E5237DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2945E5238DTED2.wrl"  
   "N2945E5238DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2945E5239DTED2.wrl"  
   "N2945E5239DTED2.wrl" 
   ] 
      } 
      Inline { 
        url [  
  
 #"http://localhost:9090/GEODATA/DTED/VRML/N29E52/Terra
in/N2945E5240DTED2.wrl"  
   "N2945E5240DTED2.wrl" 
   ] 
      } 
   ] 
} 
 
DEF UNITLOC GeoLocation3 { 
 geoOrigin   USE ORIGIN 
 geoSystem   [ "GD" "WE" ] 
 geoCoords   "29.7118644 52.6271186 0" 
 children [ 
  Transform { 
   rotation 0.0 1.0 0.0 0.7854 
   scale    10.0 10.0 10.0 
   translation 0.0 15.0 0.0 
   children [ 
    Inline { 
     url ["M1A1.wrl"] 
    } 
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   ] 
  } 
 ] 
 autoElevation TRUE 
 autoSurfaceOrientation TRUE 
 debug       TRUE 
} 
 
DEF Interpolator GeoPositionInterpolator { 
 geoOrigin USE ORIGIN 
 geoSystem [ "GD" "WE" ] 
 key [0.0 0.99] 
    keyValue ["29.711865 52.62712 0.0" "29.762711 52.677966 
0.0"] 
} 
 
DEF Clock TimeSensor { 
 cycleInterval 100.0 
 loop TRUE 
} 
 
ROUTE Clock.fraction_changed TO
 Interpolator.set_fraction 
ROUTE Interpolator.geovalue_changed TO 
UNITLOC.set_geoCoords 
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